
sort by key and then merge.
|R|log(|R|)+|S|log(|S|)+|S|+|R|
If it already is sorted or if the join key and the requested sorting are the same, then this method is
used.
Also good for large datasets.

Algorithms
Mittwoch, 3. Mai 2017 13:17

 DMDB Seite 1

https://en.wikipedia.org/wiki/External_sorting

Nested Loop Join

works really well if R and S are small, and otherwise it's not so nice. Complexity |R|× |S| can
explode fast.

Block Nested Loops

 DMDB Seite 2

https://en.wikipedia.org/wiki/External_sorting

Hash Join

https://en.wikipedia.org/wiki/Hash_join

only works for equijoins. Idea is that the hashfunction creates buckets. (Maybe hash the bucket
again if they're many.)
Idea is that one bucket will always fit in main memory.

 DMDB Seite 3

https://en.wikipedia.org/wiki/Hash_join

Idea is that one bucket will always fit in main memory.
O(|R| + |S|)

If RAM bucket is full, just write it to hdd, when it is full again, append on HDD. Idea is that this
whole hdd block will in the end still fit into main memory. So we need roughly relationsize/n main
memory to load back from hdd and n from just the buckets in RAM.
estimate: hashjoin needs at least the square root of relation size.
Goal: to minimize (n, R/n) by choosing n. This is minimal for n approx sqrt(R)

 DMDB Seite 4

Algorithms
When to use which one

sort-merge join
sorts the relations by the join attribute, then runs interleaved scans to merge the rows.

Useful when the data is already sorted, and for large datasets

External merge-sort
1. Read RAM-size in main memory and sort
2. write sorted data to disk
3. repeat until all data is in sorted RAM-sized chunks
4. read the first few MB of each chunk so that they fit into ram
5. merge those into an output buffer and when this is full, write it into a final array. When a input
buffer empties, refill.

Nested Loop Join
Simply a double loop. if r and s satisfy the join condition, then join.
works well if R and S are small, otherwise it's bad
 can explode fast.

Block Nested Loops
suppose R < S. Only scan S once for every group of R tuples - i.e. read an entire page of R tuples into
memory, load them into a hash table. Then scan S and probe the hash table to find matching tuples
in the hash table.

 where M is the number of available pages of internal memory and the P are the sizes of R and S

in pages.
This runs in if R fits in the available internal memory.

Hash Join
Prepare a hash table and then scan the larger relation and find the relevant rows from the smaller
relation within the hash table.
This requires that the smaller join relation fits into memory and only works for equijoins. Useful if we
often join on the same attribute of the smaller relation because then we can reuse the hash table.
Idea is that one bucket of the hash function will always fit in main memory.

If RAM bucket is full, write it to hdd. When it is full again, append it on hdd. So we need roughly
relationsize/n main memory to load back from hdd and n for those that are already in RAM.

Estimate: hashjoin needs at least

because we need to minimize

 by choosing

the amount of Buckets n. This is minimal for

Relational Algorithms
Donnerstag, 8. Juni 2017 13:56

 DMDB Seite 5

Atomicity: a transaction is executed in entirety or not at all
Consistency: a transaction executed completely on a consistent database yields a consistent result
Isolation: a transaction executes as if it were alone in the system
Durability: commited changes of a transaction are never lost - can be recovered.

ACID
Donnerstag, 8. Juni 2017 13:06

 DMDB Seite 6

2PC
Coordinator sends VOTE-REQ to all
Participants recieve that and vote YES or NO

all YES => commit and sends COMMIT

Those who voted NO have already aborted themselves
some NO => abort and sends ABORT to all which voted YES

Coordinator waits for all participants until first NO

Participant recieves COMMIT or ABORT and does that, then stops

This Protocol meets the 5 AC rules:
AC1: Every processor decides the same
AC2: Any processor arrving at a decision stops => Cannot reverse its decision
AC3: Controller only decides COMMIT if nobody voted NO => No imposed COMMIT
AC4: If there are no failures and all processors voted YES, the decision will be COMMIT (nontriviality)
AC5: If all failures are repaired and no more failures occur for sufficiently long, then all processors
will eventually reach a decision (liveness)

For AC5 we need to extend the protocol and ask around in case of timeout.

Uncertainity Period: When a participant times out waiting for a decision and everybody is in the
same situation when asking around, all processors will block. This can happen if the coordinator fails
after receiving all YES votes but before sending any COMMIT message
Why can't every participant then just ask everybody else? If one says no, abort, else say yes. Because
the failed coordinator might want to abort.
There's also the possibility that the coordinator and a participant fail. In that case, it is impossible to
say whether this participant has recieved the COMMIT and committed or whether we should abort
because no COMMIT message was sent, so we have to wait.

Persistence through logging to node disk.
YES logs before sending, NO logs before or after. Because if it crashes in between and finds neither a
YES nor a NO log record, it aborts unilaterally.
Same for the coordinator with COMMIT or ABORT.
Reason is probably that data to evaluate is then no longer in memory and cannot be reevaluated if
not yet decided.
https://courses.cs.washington.edu/courses/csep552/13sp/lectures/4/2pc.pdf

Linear 2PC
Less messages by moving on in a daisychain. Total number of messages is not 3n but only 2n
because a NO propagates in both directions and a COMMIT through the whole line. The coordinator
seems to be the end of the chain.

3PC
Doesn't block => liveness
AC1: every node decides the same
AC2: no node changes its decision
AC3: no imposed COMMIT
AC4: nontriviality: if there are no failures and everybody voted YES, then the decision will be
COMMIT
AC5: If all failures are repaired and there aren't any more for sufficiently long, then the protocol will
terminate with a decision (liveness)

Assuming no communication failures.
NB rule: Nobody can decide to commit as long as anybody is uncertain.

2PC vs 3PC
Donnerstag, 8. Juni 2017 07:17

 DMDB Seite 7

https://courses.cs.washington.edu/courses/csep552/13sp/lectures/4/2pc.pdf

Difference to 2PC: PRE-COMMIT -> ACK -> COMMIT
So if the coordinator fails after VOTE-REQ and all processors vote YES, then they would all be in
uncertainity in 2PC. In 3PC it is guaranteed that nobody has decided to commit while anybody is
uncertain. So if everybody is uncertain, they can find that out and safely abort. To make sure that
nobody is uncertain before deciding, the coordinator needs the PRE-COMMIT. Now if the
coordinator crashes after sending PRE-COMMIT, participants know what is going to happen but have
to ask around to make sure everybody is certain before committing.
If coordinator times out waiting for votes, ABORT. If coordinator times out waiting for ACKs, ignore
those and send the others a commit. (some also say to wait. The appended solutions say
otherwise) They can later ask around to find out that they should commit.
If a node fails after recieving PRE-COMMIT, it has to ask around to make sure nobody is uncertain.

Again, logging YES before sending because if crashes and no YES there, then abort. It seems like
sending precommits is not logged, so if the coordinator crashes after starting 3PC but has no
decision in its log, it has to ask around (maybe somebody already got a precommit)

Not used in practise because probability of blocking is small enough and 3PC is too expensive.

 DMDB Seite 8

 DMDB Seite 9

Sheet 9 - Minker NF, Normal Forms Slides, MVD, MVD Wikipedia

1NF: All nonkey attributes have to depend on the key. ⋆
2NF: the/a whole key (else, split the table to avoid redundancy)
3NF: and only the key (directly, no transitivity, else you take longer to access)
BCNF: The same holds for key attributes (only different if we have overlapping keys, or in a case like
below)

Aso de merksatz isch eifach ambiguous, aber ich merks mir demfall eifach mit "All nonkey attributes
must depend on the key (1NF), the whole key (2NF) mit transitivität erlaubt, and only the superkey

(3NF) mit transitivität nöd erlaubt aber halt direkti supersets scho)"

In addition to the primary key, the relation may contain other candidate keys; it is necessary to
establish that no non-prime attributes have part-key dependencies on any of these candidate keys.
Aus <https://en.wikipedia.org/wiki/Second_normal_form>

An attribute can only have one value
A row has to be unique
A row has to be determined by a key uniquely

⋆ 1NF also includes other basic stuff like

Formally:

Y is part of X (trivial dependency)
Y is part of a key (because not nonkey)
X is a key or a superset of a key (depends on a whole key or more)
There is no attribute in X that belongs in a key (=> does not depend only partly on key)

2NF: For every functional dependency X -> Y, one of the following holds

This statement suffices no more, we got rid of some transitivity. The other three still hold:
Either
Y is part of X
Y is part of a key (because not nonkey)
X is a key or a superset of a key

3NF: There is no attribute in X that belongs in a key

It now has to hold also for key attributes. What remains is
Y is part of X
X is a key or a superset of a key

BCNF: Y is part of a key (because not nonkey)

AND for every non-trivial multivalued dependency X ->> Y, X is a superkey. That is, X is either a
candidate key (minimal) or a superset of a key.

X ->> Y falls Y und Z sich nicht implizieren aber als Mengen klar definiert sind für jedes X.
Trivial MVD ist es wenn Y subset von X oder X Y die ganze Relation ist.

4NF: if the relation is in BCNF

Normal Forms & MVD
Donnerstag, 8. Juni 2017 09:34

 DMDB Seite 10

onenote:#Sheet%209%20-%20Minker§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={E660937A-660C-4192-B004-97B280E240EE}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one
onenote:#NF§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={07416252-AC7C-445B-B8F5-C7750BAA2A2E}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one
https://www.systems.ethz.ch/sites/default/files/file/COURSES/2017_SPRING_COURSES/DataModelingAndDatabases/upload/exercise09_slides.pdf
onenote:#MVD§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={4D88C33F-2751-4BF6-AB72-B97F5B1C3550}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one
https://en.wikipedia.org/wiki/Fourth_normal_form#Example
https://en.wikipedia.org/wiki/Second_normal_form

"MVD ist es genau dann, wenn für alle Reihenpaare (t1,t2) ein Reihenpaar existiert, sodass
alle kombinationen von β und γ abgedeckt sind, die beiden also einander nicht implizieren,
und alle Reihen das selbe α haben."
Also geht es darum, ob es mehrere kombinationen gibt, die eigentlich
unabhängig von einem anderen key sind.

BCNF vs 3NF
R{A,B,C} where {A,B} is a key. Given the dependency C->B, R satisfies the requirements of 3NF but
not BCNF.

Aus <https://stackoverflow.com/questions/8437957/difference-between-3nf-and-bcnf-in-simple-terms-must-be-able-to-
explain-to-an-8>

See also https://stackoverflow.com/a/33379413/2550406

FD->MVD
When X -> Y, then also X ->> Y

Lossless Decomp

the decomposition is lossless iff

The formal definition also says that it must fulfill , but this simply means that it's not ok
if some element is lost or added - that should be obvious anyway.

Argumentation using FDs

 DMDB Seite 11

https://stackoverflow.com/questions/8437957/difference-between-3nf-and-bcnf-in-simple-terms-must-be-able-to-explain-to-an-8
https://stackoverflow.com/questions/8437957/difference-between-3nf-and-bcnf-in-simple-terms-must-be-able-to-explain-to-an-8
https://stackoverflow.com/a/33379413/2550406

Dependency Preserving Decomp
Keeps the FDs within the same table

 DMDB Seite 12

Minimal Basis
minimal basis
1. Split all FDs so that there is one FD for each right side

1.5 Test every left hand side and remove parts of it that are implied by the rest of the lefthand
side.
// Use this to be on the safe side, so we can always ignore the FD that we're changing both in
lefthand and righthand reductions

(

)
2. For each FD, try to remove each lefthand-element and deduce the right side with the other FDs,
including the one we're trying to change. If it works, remove that element, else try the next.
3. remove redundant dependencies by trying to come from its left side to its right side without that
FD itself
4. merge right sides back together for the same lefthand sides.

Synthesis Algorithm -> 3NF
1. Compute the Minimal Basis
2. for all FD X -> Y, … in the minimal basis, create a relation {X,Y, …}
3. create a relation for one all keys of the original relation
4. remove all relations that are subsets of other relations

Proof that this gives 3NF

3NF->BCNF

minimal Basis & Synthesis
Donnerstag, 8. Juni 2017 13:21

 DMDB Seite 13

onenote:#minimal%20basis§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={B7AD0DE0-0EDF-4498-A7ED-B65EBDC92F5F}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one

Decomposition to 4NF
http://infolab.stanford.edu/~ullman/fcdb/spr99/lec14.pdf

 DMDB Seite 14

http://infolab.stanford.edu/~ullman/fcdb/spr99/lec14.pdf

http://infolab.stanford.edu/~ullman/fcdb/spr99/lec14.pdf
Start in 3NF
For every MVD (evil), remove its relation from R and add instead

 DMDB Seite 15

http://infolab.stanford.edu/~ullman/fcdb/spr99/lec14.pdf

Integrity Constraints
unique for alternative keys
foreign key / references references columns within the same database but maybe another table. if
an entry in one column has to be existent in a different column, then it is a foreign key / referenced
key.
In InnoDB there must be an index where the foreign key columns are listed as the first columns in
the same order (for speed). The keyword foreign key is written in the child table. The parent table
column contains the valid values. If something in the parent is deleted, the ON DELETE in the child
declaration triggers.

Maintaining:
cascade propagate the updates or deletes. So deletes all child rows that referenced this.
restrict prevent deletion of the primary key before attempting the change. Causes an error.
no action prevents modifications but might trigger something. Causes an error.
set default, set null sets references to null or default value when they are updated/deleted

ECA: Event, Condition, Action

Example Syntax:

ON UPDATE CASCADE);
(…, k integer references table_R

create table table_S

Constraints on Domains
check s between 1 and 13
check level in (`Assistant´, 'Associate', 'Full')
check (begin_date < end_date)

ALTER TABLE Persons ADD CHECK (age>=18);

Within a "CREATE TABLE" block:
age int CONSTRAINT CHK_PersonAge CHECK (age>=18);
or
age int check(age>=18)

ALTER TABLE Persons DROP CONSTRAINT CHK_PersonAge;

Integrity Constraints
Donnerstag, 8. Juni 2017 10:59

 DMDB Seite 16

onenote:#Integrity%20Constraints§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={747D2F0C-2227-4F2E-926F-4564C429B927}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one

Events
ON UPDATE, AFTER UPDATE, BEFORE UPDATE
=> we can use old.Level and new.Level, but with a colon before it in oracle. Not in mysql and
postgresql tho.

Triggers
Instead of in the table itself
CREATE TRIGGER my_trigger
AFTER UPDATE OR DELETE
ON Persons

my_action other_table.action
DECLARE

my_action := 'update';
IF UPDATING THEN

my_action :='delete';
ELSIF DELETING THEN

END IF;

INSERT INTO …. do something else

BEGIN

END

 DMDB Seite 17

Perform selection and projection early
Perform most restrictive selection and join operations before similar operations.
Some systems use heuristics.
=> TODO: Look at Query Tree

Query optimization
Donnerstag, 8. Juni 2017 14:49

 DMDB Seite 18

Like operator
WHERE column LIKE pattern
% stands for 0 or more characters
_ stands for a single character
regex supported with REGEXP instead of LIKE. In Postgresql, this is regexp_matches("reg{e|ex}p"}

Where equal
With a single equality sign. =, not ==
Not equal is <>
BETWEEEN 1 AND 3 is the same as <= 3 and >= 1

Trick Question: remember Candidate key must be minimal

DELETE FROM
has no asterisk

Default order of ORDER BY
ASC

Mysql JOIN ON vs USING

Group By
is on the selection, not before it.

Forign Key without any trigger is the same as RESTRICT

ER
usually, the relationkey does not contain the attributes of the relation. in an 1-N relation, one entity
specified as key suffices.

is-a has the arrow pointing to the container. e.g. man -> person <- woman
is-a need not be complete: A Person can be neither man nor woman. Or both.

Notes Ex '16
Freitag, 9. Juni 2017 10:38

 DMDB Seite 19

Aufpassen: wenn 1 zuerst liest und dann 2 schreibt, danach beide committen, dann
ist es trotzdem strict.

strict, aca, recoverable
Freitag, 9. Juni 2017 14:03

 DMDB Seite 20

Given , we can reform the history to
 and the result stays the same.
The read still gets the same value of A and the final value of A is the same as well. Is
this a legal serialization? Why/Why not?
A: We aren't allowed to change the order within the same transaction.

For s2PL, 2PL, ss2PL see Sheet 11 - Minker

 DMDB Seite 21

onenote:#Sheet%2011%20-%20Minker§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={00620465-ABA9-45D8-AB0C-E693647EA418}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one

NOT IN
SELECT * FROM employees ee WHERE
ee.emp_no NOT IN
(SELECT e.emp_no
FROM employees e
JOIN dept_emp de ON e.emp_no = de.emp_no)

// we could also do a MINUS instead of EXCEPT (but not in postgresql). They are synonymous in
Oracle SQL.
// The difference (minus) returns repetitions in Oracle
The NOT IN works good in where clause, the EXCEPT works on the set level, like e.g. UNION
The except does not return repetitions. Unless writing "except all"

right outer join
 takes join plus all remaining right sides
⟕ takes join plus all remaining left sides

ORDER BY
sorts ascending by default

this regards column2 only where column1 is the same

GROUP BY

GROUP BY needs to include all non-aggregates. Not sure why. Maybe so it knows in which order to
sort them internally. This is different in other implementations but Postgresql needs a primary key to
group by, or if you don't select the primary key then a complete specification.

NULL values are together in one group

GROUP BY only prints the same grouped elements once. Useful for aggregate functions (splitting
into groups. otherwise use order by)

INTERSECT, UNION ALL
INTERSECT takes distinct values, so does UNION
UNION ALL takes also duplicate rows, as does NATURAL JOIN

HAVING

… HAVING DATEPART(year, dep.from_date) > 1990

Sheetback
Sonntag, 11. Juni 2017 11:47

 DMDB Seite 22

Converting to Float
+0.0
or
CAST (SUM(alpha) AS FLOAT)

Aggregates

SUBSTRING (expression ,start , length)
start
Is an integer or bigint expression that specifies where the returned
characters start. (The numbering is 1 based, meaning that the first character
in the expression is 1). If start is less than 1, the returned expression will
begin at the first character that is specified in expression. In this case, the
number of characters that are returned is the largest value of either the sum
of start + length- 1 or 0. If start is greater than the number of characters in the
value expression, a zero-length expression is returned.

SELECT COUNT(*) …
counts everything else in the selection

WITH

 DMDB Seite 23

 DMDB Seite 24

FS15, Question 5
There is transitive dependencies: G -> E, I -> H, J so it is not in 3NF
Creating a 3NF:
A -> B, C, D, E, F, I
D -> A
EFI -> G
EI -> H
EI -> J
I -> K
G -> E,I

=>
A -> B, C, D, E, F, G, H, I, J, K
G -> E,I
D -> A

https://stackoverflow.com/questions/60174/how-can-i-prevent-sql-injection-in-php SQL injection

notes temp
Mittwoch, 7. Juni 2017 18:39

 DMDB Seite 25

https://stackoverflow.com/questions/60174/how-can-i-prevent-sql-injection-in-php

a relation in the database
a constant relation

Atoms: basic expressions

Operators: composite expressions

//Recall cartesion Product from earlier in
https://www.systems.ethz.ch/sites/default/files/file/COURSES/2017
_SPRING_COURSES/DataModelingAndDatabases/upload/Ch3-RelationalModel.pdf

Selection returns table of relations
Projection
Projection is one of the basic operations of Relational Algebra. It takes a relation and a (possibly
empty) list of attributes of that relation as input. It outputs a relation containing only the specified
list of attributes with duplicate tuples removed. In other words the output must also be a relation.
Aus <http://stackoverflow.com/questions/3461099/what-is-a-projection>

A projection is a unary operation written as
where
is a set of attribute names. The result of such projection is defined as the set that is obtained when

all tuples in R are restricted to the set
Aus <https://en.wikipedia.org/wiki/Relational_algebra#Projection_.28.CF.80.29>

Cartesian Product

Relational Algebra
Freitag, 3. März 2017 08:41

 DMDB Seite 26

https://www.systems.ethz.ch/sites/default/files/file/COURSES/2017_SPRING_COURSES/DataModelingAndDatabases/upload/Ch3-RelationalModel.pdf
https://www.systems.ethz.ch/sites/default/files/file/COURSES/2017_SPRING_COURSES/DataModelingAndDatabases/upload/Ch3-RelationalModel.pdf
http://stackoverflow.com/questions/3461099/what-is-a-projection
https://en.wikipedia.org/wiki/Unary_operation
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Relational_algebra#Projection_.28.CF.80.29

jedes mit jedem
=> huge result set (n*m)
only useful in combination with a selection -> join

Natural Join
 combines the the selection of the entries that fulfill R and the entries that fulfill S. Returns a
table with all entries that are in at least one of the two relations.

The result of the natural join is the set of all combinations of tuples in R and S that are equal on their
common attribute names
Aus <https://en.wikipedia.org/wiki/Relational_algebra#Projection_.28.CF.80.29>

Threeway natural Join
Same but first join two of the three, and then join the third

Theta-Join

R and S must have no common attributes

same as natural join but instead of comparing whether tuples are equal to match, you compare it
using the binary operator

left join
keep lines on left side that didn't match on right

join variants

 DMDB Seite 27

https://en.wikipedia.org/wiki/Relational_algebra#Projection_.28.CF.80.29

natural join (by matching tuples)
combining the lines that fit the same C (end of left line and start of right)

left outer join
natural join AND unmatched tuples from only the left Relation table (these are now in a new
line)

right outer join
same but keeping those unmatched from the right side instead of the left in a new line
full outer join
keeping both in new lines if not matched

Left/right semi join
Keep the lines of L/R for which a line in R/L matches

Rename operator
renaming of relation names
is needed to process self-joins and recursive relationships
e.g. two-level dependencies ("grandparents")

A rename is a unary operation written as
where the result is identical to R except that the b attribute in all tuples is renamed to an a attribute

Aus <https://en.wikipedia.org/wiki/Relational_algebra#Projection_.28.CF.80.29>

 DMDB Seite 28

https://en.wikipedia.org/wiki/Unary_operation
https://en.wikipedia.org/wiki/Relational_algebra#Projection_.28.CF.80.29

Intersection
only applicable if both relations have the same schema (same attribute names and attribute
domains)

Division
 Find lines in R that match with lines in S on their common elements but remove those
common elements. (needs to fulfill _all_ in S)

 DMDB Seite 29

For every variable you have written to (it's not about read from variables)
Abort if at commitment time you notice that somebody else already wrote to this variable
since your starting time. (even if not since your first actual action)

Wieso abort statt einfach überschreiben? Und wieso nicht auch wenn jemand gelesen hat
aborten?

Snapshot Isolation:

Like 2PL, but only unlock write-locks at commit. Read-locks may be released whenever in the
second phase.

S2PL:

SI & S2PL
Samstag, 5. August 2017 18:00

 DMDB Seite 30

Replication
Samstag, 5. August 2017 18:40

 DMDB Seite 31

Entity Relationship Model
is_a is not complete. A Person does not have to take part in the is_a relationship when the graph
says (man, woman) is_a person.
Also, is_a says that 'man' is person. But it does not say that 'man' cannot be 'woman'.

There is no way to say a father cannot be his own son.

If we fix all except one object in a relationship, the relationship is uniquely identified or inexistent.
There are no two relationships where A and B are the same but C is not, unless the line to C is
annotated 'N' .

Max-Min notation
It is 'how often can the same object participate in the relationship'.
Compared: the usual 1/N notation is 'how many different objects can participate in the relationship'.
min-max syntax:

SQL
JOIN without ON in mySQL generates a cross product. not a natural join. Best to always use ON with
postgresql for the DMDB guys.
Similarly, FROM A, B generates a cartesion product.

WHERE … ALL (…)
WHERE … ANY (…)
are a thing

Cannot use an Aggregate in the WHERE clause

Union is distinct

Look at Check, Primary Key, Constraints, ON DELETE CASCATE and so on
Ex7 looks useful for that

Relational Algebra
Left Join ≠ Left outer Join

FDs

Find candidate keys systematically by computing minimal basis

Normal form
It is always possible to obtain a 3NF design without sacrificing lossless-join or dependency-
preservation.

•

Aus <https://www.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/Chapter7/node12.html>

What is 3NF vs BCNF?

Exam Prep
Montag, 26. Februar 2018 09:06

 DMDB Seite 32

https://www.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/Chapter7/node12.html

Join Algorithms

Look at old exercise 10 solution

What is "Indexed Nested loop Join"?

 DMDB Seite 33

