Algorithms

Mittwoch, 3. Mai 2017 13:17

Algorithms for Rel. Algebra

a Table Access

» scan (load each page at a time)
> index scan (if index available)

a Sorting
» Two-phase external sorting

a Joins

> (Block) nested-loops

» Index nested-loops

> Sort-Merge

» Hashing (many variants)
o Group-by (™~ self-join)

» Sorting

» Hashing

The sort-merge join (also known as merge join) is a join algorithm and is used in the
implementation of a relational database management system.

The basic problem of a join algorithm is to find, for each distinct value of the join attribute,
the set of tuples in each relation which display that value. The key idea of the sort-merge
algorithm is to first sort the relations by the join attribute, so that interleaved linear scans

will encounter these sets at the same time.

sort by key and then merge.

IR[log(IR])+[S[log(|S])+|S|+|R]

If it already is sorted or if the join key and the requested sorting are the same, then this method is
used.

Also good for large datasets.

External sorting is a class of sorting algorithms that can handle massive amounts of
data. External sorting is required when the data being sorted do not fit into the main
memory of a computing device (usually RAM) and instead they must reside in the slower
external memory, usually a hard disk drive. External sorting typically uses a hybrid sort-
merge strategy. In the sorting phase, chunks of data small enough to fit in main memory
are read, sorted, and written out to a temporary file. In the merge phase, the sorted
subfiles are combined into a single larger file.

DMDB Seite 1

External merge sort |editsource]

One example of external sorting is the external merge sort algorithm, which sorts chunks
that each fit in RAM, then merges the sorted chunks together.['l2] For example, for
sorting 900 megabytes of data using only 100 megabytes of RAM:

1. Read 100 MB of the data in main memory and sort by some conventional method,
like quicksort.

2. Write the sorted data to disk.

3. Repeat steps 1 and 2 until all of the data is in sorted 100 MB chunks (there are
900MB / 100MB = 9 chunks), which now need to be merged into one single output
file.

4. Read the first 10 MB (= 100MB / (9 chunks + 1)) of each sorted chunk into input
buffers in main memory and allocate the remaining 10 MB for an output buffer. (In
practice, it might provide better performance to make the output buffer larger and
the input buffers slightly smaller.)

5. Perform a 9-way merge and store the result in the output buffer. Whenever the
output buffer fills, write it to the final sorted file and empty it. Whenever any of the 9
input buffers empties, fill it with the next 10 MB of its associated 100 MB sorted
chunk until no more data from the chunk is available. This is the key step that
makes external merge sort work externally -- because the merge algorithm only
makes one pass sequentially through each of the chunks, each chunk does not
have to be loaded completely; rather, sequential parts of the chunk can be loaded
as needed.

https://en.wikipedia.org/wiki/External sorting

Nested Loop Join

Two relations R and S are joined as follows:

For each tuple r in R do
For each tuple s in S do
If r and s satisfy the join condition
Then output the tuple <r,s»>

works really well if R and S are small, and otherwise it's not so nice. Complexity |R|x |S]| can
explode fast.

Block Nested Loops

DMDB Seite 2

https://en.wikipedia.org/wiki/External_sorting

A block-nested loop (BNL) is an algorithm used to join two relations in a relational
database.']

This algorithm!?] is a variation on the simple nested loop join used to join two relations R
and S (the "outer” and "inner" join operands, respectively). Suppose |R| < |S].Ina
traditional nested loop join, S will be scanned once for every tuple of R. If there are many
qualifying R tuples, and particularly if there is no applicable index for the join key on S,
this operation will be very expensive.

The block nested loop join algorithm improves on the simple nested loop join by only
scanning .S once for every group of R tuples. For example, one variant of the block
nested loop join reads an entire page of R tuples into memory and loads them into a hash
table. It then scans S, and probes the hash table to find S tuples that match any of the
tuples in the current page of R. This reduces the number of scans of S that are
necessary.

A more aggressive variant of this algorithm loads as many pages of R as can be fit in the
available memory, loading all such tuples into a hash table, and then repeatedly scans S.
This further reduces the number of scans of S that are necessary. In fact, this algorithm is
essentially a special-case of the classic hash join algorithm[¢&00n needed]

The block nested loop runs in O(P,,R.i /M) 1/0s where M is the number of available
pages of internal memory and P, and P, is size of R and .S respectively in pages. Note
that block nested loop runs in O(P, + Ps) I/Os if R fits in the available internal memory.

Hash Join
Classic hash join [editsource]

The classic hash join algorithm for an inner join of two relations proceeds as follows:

« First prepare a hash table of the smaller relation. The hash table entries consist of the
join attribute and its row. Because the hash table is accessed by applying a hash
function to the join attribute, it will be much quicker to find a given join attribute's rows
by using this table than by scanning the original relation.

« Once the hash table is built, scan the larger relation and find the relevant rows from
the smaller relation by looking in the hash table.

The first phase is usually called the "build" phase, while the second is called the
"probe" phase. Similarly, the join relation on which the hash table is built is called the
"build" input, whereas the other input is called the "probe" input. It is like merge join

alg orithm [clarification needed] .

This algorithm is simple, but it requires that the smaller join relation fits into memory,
which is sometimes not the case. A simple approach to handling this situation proceeds
as follows:

1. For each tuple r in the build input R
1. Add r to the in-memory hash table
2. If the size of the hash table equals the maximum in-memory size:
1. Scan the probe input S, and add matching join tuples to the output
relation
2. Reset the hash table, and continue scanning the build input R

2. Do a final scan of the probe input S and add the resulting join tuples to the output
relation

This is essentially the same as the block nested loop join algorithm. This algorithm scans
S more times than necessary.
https://en.wikipedia.org/wiki/Hash join

only works for equijoins. Idea is that the hashfunction creates buckets. (Maybe hash the bucket
again if they're many.)

DMDB Seite 3

https://en.wikipedia.org/wiki/Hash_join

Idea is that one bucket will always fit in main memory.
O([R] +1S])

If RAM bucket is full, just write it to hdd, when it is full again, append on HDD. Idea is that this
whole hdd block will in the end still fit into main memory. So we need roughly relationsize/n main
memory to load back from hdd and n from just the buckets in RAM.

estimate: hashjoin needs at least the square root of relation size.

Goal: to minimize (n, R/n) by choosing n. This is minimal for n approx sqrt(R)

DMDB Seite 4

Relational Algorithms

Donnerstag, 8. Juni 2017 13:56

Algorithms
When to use which one

sort-merge join

sorts the relations by the join attribute, then runs interleaved scans to merge the rows.
Rlog(R) + Slog(S) +S+R

Useful when the data is already sorted, and for large datasets

External merge-sort

1. Read RAM-size in main memory and sort

2. write sorted data to disk

3. repeat until all data is in sorted RAM-sized chunks

4. read the first few MB of each chunk so that they fit into ram

5. merge those into an output buffer and when this is full, write it into a final array. When a input
buffer empties, refill.

Nested Loop Join

Simply a double loop. if r and s satisfy the join condition, then join.
works well if R and S are small, otherwise it's bad

R * S can explode fast.

Block Nested Loops

suppose R < S. Only scan S once for every group of R tuples - i.e. read an entire page of R tuples into
memory, load them into a hash table. Then scan S and probe the hash table to find matching tuples
in the hash table.

PP

e where M is the number of available pages of internal memory and the P are the sizes of R and S

in pages.
This runs in O(B. + F) if R fits in the available internal memory.

Hash Join

Prepare a hash table and then scan the larger relation and find the relevant rows from the smaller
relation within the hash table.

This requires that the smaller join relation fits into memory and only works for equijoins. Useful if we
often join on the same attribute of the smaller relation because then we can reuse the hash table.
Idea is that one bucket of the hash function will always fit in main memory.

OR+YS)

If RAM bucket is full, write it to hdd. When it is full again, append it on hdd. So we need roughly

relationsize/n main memory to load back from hdd and n for those that are already in RAM.

. .. - L R .
Estimate: hashjoin needs at least vV Relationsize because we need to minimize (n, ;) by choosing

the amount of Buckets n. This is minimal for n ~ VR

max(k, N, /k) results from two phases of GHI: partitioning and build&probe. During
partitioning we need at least & [(#Fpartitions) pages to accommodate all partitions. During
buildd&probe, we need _"-.'I....-"}-.' (N, Ffpages for the smaller relation) pages on average to
accommodate the hash tables. Thus, the maximum of these two mumbers dictates how much
buifer we need. Now, we can select a &', in order to minimize the needed buffer space:

k= ;11',-_{I]m'|1 maz(k, Ny k) = ,”T_I.

DMDB Seite 5

ACID

Donnerstag, 8. Juni 2017 13:06

Atomicity: a transaction is executed in entirety or not at all

Consistency: a transaction executed completely on a consistent database yields a consistent result
Isolation: a transaction executes as if it were alone in the system
Durability: commited changes of a transaction are never lost - can be recovered.

DMDB Seite 6

2PCvs 3PC

Donnerstag, 8. Juni 2017 07:17

2PC
Coordinator sends VOTE-REQ to all
Participants recieve that and vote YES or NO
Coordinator waits for all participants until first NO

all YES => commit and sends COMMIT

some NO => abort and sends ABORT to all which voted YES

Those who voted NO have already aborted themselves

Participant recieves COMMIT or ABORT and does that, then stops

This Protocol meets the 5 AC rules:

AC1: Every processor decides the same

AC2: Any processor arrving at a decision stops => Cannot reverse its decision

AC3: Controller only decides COMMIT if nobody voted NO => No imposed COMMIT

AC4: If there are no failures and all processors voted YES, the decision will be COMMIT (nontriviality)
ACS: If all failures are repaired and no more failures occur for sufficiently long, then all processors
will eventually reach a decision (liveness)

For AC5 we need to extend the protocol and ask around in case of timeout.

Uncertainity Period: When a participant times out waiting for a decision and everybody is in the
same situation when asking around, all processors will block. This can happen if the coordinator fails
after receiving all YES votes but before sending any COMMIT message

Why can't every participant then just ask everybody else? If one says no, abort, else say yes. Because
the failed coordinator might want to abort.

There's also the possibility that the coordinator and a participant fail. In that case, it is impossible to
say whether this participant has recieved the COMMIT and committed or whether we should abort
because no COMMIT message was sent, so we have to wait.

Persistence through logging to node disk.

YES logs before sending, NO logs before or after. Because if it crashes in between and finds neither a
YES nor a NO log record, it aborts unilaterally.

Same for the coordinator with COMMIT or ABORT.

Reason is probably that data to evaluate is then no longer in memory and cannot be reevaluated if
not yet decided.

https://courses.cs.washington.edu/courses/csep552/13sp/lectures/4/2pc.pdf

Linear 2PC

Less messages by moving on in a daisychain. Total number of messages is not 3n but only 2n
because a NO propagates in both directions and a COMMIT through the whole line. The coordinator
seems to be the end of the chain.

3PC

Doesn't block => liveness

AC1: every node decides the same

AC2: no node changes its decision

AC3: no imposed COMMIT

AC4: nontriviality: if there are no failures and everybody voted YES, then the decision will be
COMMIT

ACS: If all failures are repaired and there aren't any more for sufficiently long, then the protocol will
terminate with a decision (liveness)

Assuming no communication failures.
NB rule: Nobody can decide to commit as long as anybody is uncertain.

DMDB Seite 7

https://courses.cs.washington.edu/courses/csep552/13sp/lectures/4/2pc.pdf

Difference to 2PC: PRE-COMMIT -> ACK -> COMMIT

So if the coordinator fails after VOTE-REQ and all processors vote YES, then they would all be in
uncertainity in 2PC. In 3PC it is guaranteed that nobody has decided to commit while anybody is
uncertain. So if everybody is uncertain, they can find that out and safely abort. To make sure that
nobody is uncertain before deciding, the coordinator needs the PRE-COMMIT. Now if the
coordinator crashes after sending PRE-COMMIT, participants know what is going to happen but have
to ask around to make sure everybody is certain before committing.

If coordinator times out waiting for votes, ABORT. If coordinator times out waiting for ACKs, ignore
those and send the others a commit. (some also say to wait. The appended solutions say
otherwise) They can later ask around to find out that they should commit.

If a node fails after recieving PRE-COMMIT, it has to ask around to make sure nobody is uncertain.

Again, logging YES before sending because if crashes and no YES there, then abort. It seems like
sending precommits is not logged, so if the coordinator crashes after starting 3PC but has no

decision in its log, it has to ask around (maybe somebody already got a precommit)

Not used in practise because probability of blocking is small enough and 3PC is too expensive.

The following sequence of events shows an execution of the 3PC protocol where no failures occur:

time step | event

1 (C, Py, request)

2 (C, Pa, request)

3 (P1.C. yes)

1 (P2, C, yes)

5 (C, Py, pre-commit)
6 (C, P», pre-commit)
7 (P, C, ack)

8 (P2, C, ack)

9 (C, P1, commit)

10 (C, Ps. commit)

We now modify this sequence of events starting from some time step. Complete each new sequence
with one possible next event such that it models a valid execution of the 3PC protocol.

Sequence (i): Sequence (iv):
time step | event time step | event
1 (Ps.C. no) 6 (C, fail)
5 (C, Py, abort) 7 (P;, ask around ~~ commit

Sequence: (v):
Sequence (ii): equence (v)

time step | event

time step | event

1 (Pa, fail)
2 (C, fail)
3 (P, C, yes) 5 (C, Py, abort)
1 (P,, ask around ~ abort)

Sequence (vi):

time step | event
Sequence (iii): / I

6 (Ps, fail)
time step | event 7 (C, Pa, pre-commit)
5 (C, fail) = (P, C, ack)
6 (Py, ask around ~ abort) 9 (C, Py, commit)

DMDB Seite 8

Termination Protocol

TR4 is similar to 3PC, have we actually

Elect a new coordinator.

New coordinator sends a “state
req” to all processes. Participants
send their state (aborted,
committed, uncertain,
committable).

TR1 = If some “aborted” received,
then abort.

TR2 = If some “committed”
received, then commit.

TR3 = If all uncertain, then abort.

TR4 = If some “committable” but no
“committed” received, then send
“PRE-COMMIT” to all, wait for ACKs
and send commit message.

} <

.
e e ¢ ety hn

solved the problem?

Yes, failures of the participants on
the termination protocol can be
ignored. At this stage, the
coordinator knows that everybody
is uncertain, those who have not
sent an ACK have failed and cannot
have made a decision. Therefore,
all remaining can safely decide to
commit after going over the pre-
commit and commit phases.

The problem is when the new
coordinator fails after asking for the
state but before sending any pre-
commit message. In this case ‘ve
have to start all over again. 3+

DMDB Seite 9

Normal Forms & MVD

Donnerstag, 8. Juni 2017 09:34

Sheet 9 - Minker NF, Normal Forms Slides, MVD, MVD Wikipedia

1INF: All nonkey attributes have to depend on the key. *

2NF: the/a whole key (else, split the table to avoid redundancy)

3NF: and only the key (directly, no transitivity, else you take longer to access)

BCNF: The same holds for key attributes (only different if we have overlapping keys, or in a case like
below)

Aso de merksatz isch eifach ambiguous, aber ich merks mir demfall eifach mit "All nonkey attributes
must depend on the key (1NF), the whole key (2NF) mit transitivitat erlaubt, and only the superkey
(3NF) mit transitivitat nod erlaubt aber halt direkti supersets scho)"

In addition to the primary key, the relation may contain other candidate keys; it is necessary to

establish that no non-prime attributes have part-key dependencies on any of these candidate keys.
Aus <https://en.wikipedia.org/wiki/Second normal form>

* 1NF also includes other basic stuff like
An attribute can only have one value
A row has to be unique
A row has to be determined by a key uniquely

Formally:
2NF: For every functional dependency X -> Y, one of the following holds

Y is part of X (trivial dependency)

Y is part of a key (because not nonkey)

X is a key or a superset of a key (depends on a whole key or more)

There is no attribute in X that belongs in a key (=> does not depend only partly on key)

3NF: Fhere-is-ho-attribute-inX-that belongsinakey

This statement suffices no more, we got rid of some transitivity. The other three still hold:
Either

Y is part of X

Y is part of a key (because not nonkey)

X is a key or a superset of a key

BCNF: Y-ispart-ofakey-{becausenotnonkey}

It now has to hold also for key attributes. What remains is
Y is part of X
X is a key or a superset of a key

4NF: if the relation is in BCNF
AND for every non-trivial multivalued dependency X ->> Y, X is a superkey. That is, X is either a
candidate key (minimal) or a superset of a key.
A multivalued dependency exists when there are at least 3 attributes (like X,Y and Z) in a
relation and for value of X there is a well defined set of values of Y and a well defined set
of values of Z. However, the set of values of Y is independent of set Z and vice versa.
X ->>Y falls Y und Z sich nicht implizieren aber als Mengen klar definiert sind fir jedes X.
Trivial MVD ist es wenn Y subset von X oder X U Y die ganze Relation ist.

DMDB Seite 10

onenote:#Sheet%209%20-%20Minker§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={E660937A-660C-4192-B004-97B280E240EE}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one
onenote:#NF§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={07416252-AC7C-445B-B8F5-C7750BAA2A2E}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one
https://www.systems.ethz.ch/sites/default/files/file/COURSES/2017_SPRING_COURSES/DataModelingAndDatabases/upload/exercise09_slides.pdf
onenote:#MVD§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={4D88C33F-2751-4BF6-AB72-B97F5B1C3550}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one
https://en.wikipedia.org/wiki/Fourth_normal_form#Example
https://en.wikipedia.org/wiki/Second_normal_form

oo 22 iff
> Vitl,t2 e Ritl.a=1t2.c0 = 3 13, 44 € R:
*t.a=t4da=tl.a=t2.a
* 138 =t1p, t4p=t2.p
* t3.y=t2y, t4y=tly
"MVD ist es genau dann, wenn fir alle Reihenpaare (t1,t2) ein Reihenpaar existiert, sodass

alle kombinationen von B und y abgedeckt sind, die beiden also einander nicht implizieren,

und alle Reihen das selbe a haben."
Also geht es darum, ob es mehrere kombinationen gibt, die eigentlich

unabhangig von einem anderen key sind.

BCNF vs 3NF
R{A,B,C} where {A,B} is a key. Given the dependency C->B, R satisfies the requirements of 3NF but

not BCNF.

Aus <https://stackoverflow.com/questions/8437957/difference-between-3nf-and-bcnf-in-simple-terms-must-be-able-to-
explain-to-an-8>

o Result
» any schema can be decomposed losslessly into BCNF
» but, preservation of dependencies cannot be guaranteec
» need to trade ,correctness” for , efficiency”
» thatis why 3NF is so important in practice

See also https://stackoverflow.com/a/33379413/2550406
The 3NF problem: The partial key/prime attribute "Court" is dependent on something other than a
superkey. Instead, it is dependent on the partial key/prime attribute "Rate Type". This means that the
user must manually change the rate type if we upgrade a court, or manually change the court if
wanting to apply a rate change.

« But what if the user upgrades the court but does not remember to increase the rate? Or what if
the wrong rate type is applied to a court?

(In technical terms, we cannot guarantee that the "Rate Type" -> "Court" functional dependency will
not be violated.)

The BCNF solution: If we want to place the above table in BCNF we can decompose the given
relation/table into the following two relations/tables (assuming we know that the rate type is
dependent on only the court and membership status, which we could discover by asking the clients
of our database, the owners of the tennis club):

FD->MVD
When X ->Y, then also X ->>Y

Lossless Decomp
the decomposition is lossless iff
(RyNR,) > Ryor (RyNR,) >R,
The formal definition also says that it must fulfill R; U R, = R, but this simply means that it's not ok
if some element is lost or added - that should be obvious anyway.

Argumentation using FDs

DMDB Seite 11

https://stackoverflow.com/questions/8437957/difference-between-3nf-and-bcnf-in-simple-terms-must-be-able-to-explain-to-an-8
https://stackoverflow.com/questions/8437957/difference-between-3nf-and-bcnf-in-simple-terms-must-be-able-to-explain-to-an-8
https://stackoverflow.com/a/33379413/2550406

A decomposition of a relation R into R1 and R2 is Lossless join decomposition if you can construct
back R by joining the relation R1 and R2(form R1 »« R2 you can obtain R).

For a decomposition of Relation R into R1 and R2 to be lossless it must satisfy any of 2 condition:

1. R1 n R2 -> R1
2. R1 n R2 -> R2

If the above relation doesn't make any sense then think of it like this when you are intersecting 2
relation R1 and R2 and obtaining common attributes then if the common attributes are able to
determine any one of the relation then this common attribute are candidate key for the obtained
relation(think why ?) and hence you can join using this candidate key the other relation to obtain R.

Regarding dependency preserving a decomposition of relation R is dependency preserving if the
Functional dependency of R can be obtained by taking the union of the functional dependency of all
the decomposed relation.

share edit flag answered Nov 8 '14 at 10:20

P38l akashchandrakar
824 #2 10 037

Dependency Preserving Decomp
Keeps the FDs within the same table

DMDB Seite 12

minimal Basis & Synthesis

Donnerstag, 8. Juni 2017 13:21

Minimal Basis
minimal basis
1. Split all FDs so that there is one FD for each right side
(
1.5 Test every left hand side and remove parts of it that are implied by the rest of the lefthand
side.
// Use this to be on the safe side, so we can always ignore the FD that we're changing both in
lefthand and righthand reductions
)
2. For each FD, try to remove each lefthand-element and deduce the right side with the other FDs,
including the one we're trying to change. If it works, remove that element, else try the next.
3. remove redundant dependencies by trying to come from its left side to its right side without that
FD itself
4. merge right sides back together for the same lefthand sides.

Synthesis Algorithm -> 3NF

1. Compute the Minimal Basis

2. forall FD X ->Y, ... in the minimal basis, create a relation {X,Y, ...}
3. create a relation for ene all keys of the original relation

4. remove all relations that are subsets of other relations

Proof that this gives 3NF

Synthesis Algo -> 3NF only ﬁ

o Let R, be a relation created by the Synthesis Algo
o Case 1: R, was created in Step 3 of the algo
» R, contains a key of R
» there are no non-trivial FDs in R,
» R,isin 3NF
o Case 2: R, was created in Step 2byan FD: a2 — 3
> () R=auf
» (2) ais a key of R,
* o is minimal because of left reduction of minimal basis
* o — R, by construction of R,

» (3) o — B is not evil because « is a superkey of R,

> (4) Lety — & be any other non-trivial FD (y &> 8 = a2 — f3)
* & < o because of right reduction in minimal basis and because a — ¥
= & contains only attributes of a key; y — & is not evil ged .

2. Apply the synthesis algorithin.

{ShipType, ShipName}

{Cargo, ShipName, Tripld}

{Date, ShipName, Tripld, Port}

{ShipName, Date}

| only need to add a relation for one of the keys, right?

You need to add relations for all keys.
3NF->BCNF

DMDB Seite 13

onenote:#minimal%20basis§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={B7AD0DE0-0EDF-4498-A7ED-B65EBDC92F5F}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one

1. Determine BCNF:

For relation R to be in BCNF, all the functional dependencies (FDs) that hold in R need to satisfy
property that the determinants X are all superkeys of R. i.e. if X->Y holds in R, then X must be a
superkey of R to be in BCNF.

In your case, it can be shown that the only candidate key (minimal superkey) is ACE. Thus both
FDs: A->B and C->D are violating BCNF as both A and C are not superkeys or R.

2. Decompose R into BCNF form:
If R is not in BCNF, we decompose R into a set of relations S that are in BCNF.
This can be accomplished with a very simple algorithm:

Initialize S = {R}

While S has a relation R' that is not in BCNF do:
Pick a FD: X->Y that holds in R' and violates BCNF
Add the relation XY to S
Update R' = R'-Y

Return S

In your case the iterative steps are as follows:

S = {ABCDE} // Intialization S = {R}
S = {ACDE, AB} // Pick FD: A->B which violates BCNF
S = {ACE, AB, (D} // Pick FD: C->D which violates BCNF

// Return S as all relations are in BCNF

Thus R(A,B,C,D,E) is decomposed into a set of relations: R1(A,C,E), R2(A,B) and R3(C,D) that
satisfies BCNF.

Note also that in this case, functional dependency is preserved but normalization to BCNF does not
guarantee this.

Lossless Decomposition

Recall that we learned how to “normalize” relations (i.e., put them in BCNF)
by decomposing their schemas into two or more sets of attributes
Example: Enroll (student, class, TA)

— In any given class, each student is assigned to exactly one TA

— One TA can assist only one class

Recall that a relation R is in BCNF if for every nontrivial FD X — Y in R,
X is a superkey
e X — Y isa BCNF violation if it is nontrivial and X does not contain
any key of R
® Based on a BCNF violation X' — Y, decompose R into two relations:
— One with X UY as its attributes
(i.e., everything in the FD)
— One with X U (attrs(R) — X —=Y) as its attributes
(i.e., left side of FD plus everything not in the FD)
Example: turn Enroll into BCNF
— BCNF violation:
— Decomposed relations:
What does this decomposition “work™? Why can’t we just tear sets of at-
tributes apart as we like?
~» The decomposed relations need to represent the same information as
the original
~+ We must be able to reconstruct the original from the decomposed re-
lations

Decomposition to 4NF

DMDB Seite 14

http://infolab.stanford.edu/~ullman/fcdb/spr99/lec14.pdf

http://infolab.stanford.edu/~ullman/fcdb/spr99/lec14.pdf

Startin 3NF

For every MVD X — Y (evil), remove its relation from R and add instead
Ry=XUY

R,=R-Y

DMDB Seite 15

http://infolab.stanford.edu/~ullman/fcdb/spr99/lec14.pdf

Integrity Constraints

Donnerstag, 8. Juni 2017 10:59

Integrity Constraints

unique for alternative keys

foreign key / references references columns within the same database but maybe another table. if
an entry in one column has to be existent in a different column, then it is a foreign key / referenced
key.

In InnoDB there must be an index where the foreign key columns are listed as the first columns in
the same order (for speed). The keyword foreign key is written in the child table. The parent table
column contains the valid values. If something in the parent is deleted, the ON DELETE in the child
declaration triggers.

Maintaining:

cascade propagate the updates or deletes. So deletes all child rows that referenced this.
restrict prevent deletion of the primary key before attempting the change. Causes an error.
no action prevents modifications but might trigger something. Causes an error.

set default, set null sets references to null or default value when they are updated/deleted

ECA: Event, Condition, Action

Example Syntax:
create table table_S
(..., kinteger references table_R
ON UPDATE CASCADE);

Constraints on Domains

check s between 1 and 13

check level in ("Assistant’, 'Associate’, 'Full')
check (begin_date < end_date)

ALTER TABLE Persons ADD CHECK (age>=18);

Within a "CREATE TABLE" block:

age int CONSTRAINT CHK_PersonAge CHECK (age>=18);
or

age int check(age>=18)

ALTER TABLE Persons DROP CONSTRAINT CHK_PersonAge;

DMDB Seite 16

onenote:#Integrity%20Constraints§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={747D2F0C-2227-4F2E-926F-4564C429B927}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one

create table Assistant

(PersNr integer primary key,
Name varchar(30) not null,
Area varchar(30),

Boss integer,

foreign key (Boss) references Professor
on delete set null);

create table Lecture

(Nr integer primary key,

Title varchar(30),

CP integer,

PersNr integer references Professor

on delete set null);

Events

ON UPDATE, AFTER UPDATE, BEFORE UPDATE

=>we can use old.Level and new.Level, but with a colon before it in oracle. Not in mysql and
postgresql tho.

Triggers
Instead of in the table itself
CREATE TRIGGER my_trigger
AFTER UPDATE OR DELETE
ON Persons
DECLARE
my_action other_table.action
BEGIN
IF UPDATING THEN
my_action := 'update’;
ELSIF DELETING THEN
my_action :='delete’;
END IF;

INSERT INTO do something else
END

DMDB Seite 17

Query optimization

Donnerstag, 8. Juni 2017 14:49

Perform selection and projection early
Perform most restrictive selection and join operations before similar operations.

Some systems use heuristics.
=>TODO: Look at Query Tree

DMDB Seite 18

Notes Ex '16

Freitag, 9. Juni 2017 10:38

Like operator

WHERE column LIKE pattern

% stands for O or more characters

_ stands for a single character

regex supported with REGEXP instead of LIKE. In Postgresq]l, this is regexp_matches("reg{e|ex}p"}

Where equal

With a single equality sign. =, not ==

Not equal is <>

BETWEEEN 1 AND 3 is the sameas<=3 and>=1

Trick Question: remember Candidate key must be minimal

DELETE FROM
has no asterisk

Default order of ORDER BY
ASC

Mysqgl JOIN ON vs USING

ON is the more general of the two. One can join tables ON a column, a set of columns and even a
condition. For example:

SELECT * FROM world.City JOIN world.Country ON (City.CountryCode = Country.Code) WHERE ...

USING is useful when both tables share a column of the exact same name on which they join. In this
case, one may say:

SELECT ... FROM film JOIN film actor USING (film_id) WHERE ...

An additional nice treat is that one does not need to fully qualify the joining columns:
SELECT film.title, film_ id # film_id is not prefixed

FROM film

JOIN film_actor USING (film_id)
WHERE ...

Group By

is on the selection, not before it.

Forign Key without any trigger is the same as RESTRICT

ER

usually, the relationkey does not contain the attributes of the relation. in an 1-N relation, one entity

specified as key suffices.

is-a has the arrow pointing to the container. e.g. man -> person <- woman
is-a need not be complete: A Person can be neither man nor woman. Or both.

DMDB Seite 19

strict, aca, recoverable

Freitag, 9. Juni 2017 14:03

Every history can be ordered in two classes relative to recoverability and serializability:

serializable

/ recoverable \

ACA

Strict

- 4
-

If a Transaction T2 writes to a data location A, which T1 later reads, then a history is:

i Recoverable if co << 1
ii Avoiding Cascading Abort (ACA) if ca <p m(A4)

iii Strict if ex < g 04(A) where 0,(A) is a read or write

o A transaction T, reads from another
transaction T, if T, reads a value written by T,
at a time when T, was not aborted

o Recoverable (RC) history

» If T, reads from T, and commits, then <

o Avoids cascading aborts (ACA) history

> If T, reads x from T, then ¢; < r.[x]
o Strict (ST) history

> If T, reads from or overwrites a value written by T,
Tj then ¢; < r[x]/ w;[x] or a; < r;[x]/ w;[x]

Aufpassen: wenn 1 zuerst liest und dann 2 schreibt, danach beide committen, dann
ist es trotzdem strict.

DMDB Seite 20

I

i

i

141 ~
ef

What do they mean?

o Recoverable:
> No need to undo a committed transaction

a ACA:

» Aborting a transaction does not cause aborting
others

a Strict:

» Undoing a transaction does not undo the changes
of other transactions

Given w, (4), w; (4), 1, (A), w,(4), ¢4, ¢5, we can reform the history to
wy(4),cq,15(4),w,(A), w,(A4), c, and the result stays the same.

The read still gets the same value of A and the final value of A is the same as well. Is
this a legal serialization? Why/Why not?

A: We aren't allowed to change the order within the same transaction.

For s2PL, 2PL, ss2PL see Sheet 11 - Minker
To comply with strong strict two-phase locking (SS2FL) the locking protocol releases
both write (exclusive) and read (shared) locks applied by a transaction only after the
fransaction has ended, i.e., only after both completing executing (being ready) and
becoming either committed or aborted. This protocol also complies with the S2PL rules. .

DMDB Seite 21

onenote:#Sheet%2011%20-%20Minker§ion-id={B66DEDE2-3296-4322-A288-6D9E17189883}&page-id={00620465-ABA9-45D8-AB0C-E693647EA418}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/DMDB.one

Sheetback

Sonntag, 11. Juni 2017 11:47

NOT IN

SELECT * FROM employees ee WHERE
ee.emp_no NOT IN

(SELECT e.emp_no

FROM employees e

JOIN dept_emp de ON e.emp_no = de.emp_no)

// we could also do a MINUS instead of EXCEPT (but not in postgresgl). They are synonymous in
Oracle SQL.

// The difference (minus) returns repetitions in Oracle

The NOT IN works good in where clause, the EXCEPT works on the set level, like e.g. UNION
The except does not return repetitions. Unless writing "except all"

right outer join
> [takes join plus all remaining right sides
>d takes join plus all remaining left sides

ORDER BY
sorts ascending by default

ORDER BY columnl DESC, column2

This sorts everything by column1 (descending) first, and then by column2 (ascending, which is the
default) whenever the columni fields for two rows are equal.

this regards column2 only where column1 is the same

GROUP BY

Group By X means put all those with the same value for X in the one group.
Group By X, Y means put all those with the same values for both X and Y in the one group.

GROUP BY needs to include all non-aggregates. Not sure why. Maybe so it knows in which order to
sort them internally. This is different in other implementations but Postgresql needs a primary key to
group by, or if you don't select the primary key then a complete specification.

NULL values are together in one group

GROUP BY only prints the same grouped elements once. Useful for aggregate functions (splitting
into groups. otherwise use order by)

INTERSECT, UNION ALL
INTERSECT takes distinct values, so does UNION
UNION ALL takes also duplicate rows, as does NATURAL JOIN

HAVING

wHERE clause introduces a condition on individual rows; HAVING clause introduces a condition on
aggregations, i.e. results of selection where a single result, such as count, average, min, max, or
sum, has been produced from multiple rows. Your query calls for a second kind of condition (i.e. a
condition on an aggregation) hence Havine works correctly.

As a rule of thumb, use wHere before Group BY and Having after croup By . Itis a rather
primitive rule, but it is useful in more than 90% of the cases.

... HAVING DATEPART(year, dep.from_date) > 1990

DMDB Seite 22

FROM employees e fou cannot use COUNT with nested subgueries. What
HAVING COUNT(you could do is move it to the nested SELECT
SELECT * FROM dept_emp de1l, dept_emp de2 1"SELEC_T _COUI IT(*) FROM .."). Then, you would need
- - to use WHERE instead of HAVING to get the result you
need. HAVING is used for checking conditions related
to aggregated results when GROUP BY is used.

WHERE del.emp_no=e.emp_no

AND de2.emp_no=emp_no

AND del.dept_no<>de2.dept_no
)>1

1. You can have both. These two do
different things. WHERE compares single
elements while HAVING compares results
of aggregating functions [AVG, SUM, MAX,
etc.] when the elements are grouped by
something. Normally, the query "works" this
way: Fist, WHERE is used to get valid
single results. Then, the results are
aggregated (using GROUP BY or simply
aggregating all values into one). Lastly,
HAVING is used to get only those results
which fulfil some condition after the
aggregation. For example:

HAVING SUM(salary) = 100

Converting to Float

+0.0

or

CAST (SUM(alpha) AS FLOAT)

Aggregates

SUBSTRING (expression ,start, length)

start

Is an integer or bigint expression that specifies where the returned

characters start. (The numbering is 1 based, meaning that the first character
in the expression is 1). If start is less than 1, the returned expression will

begin at the first character that is specified in expression. In this case, the
number of characters that are returned is the largest value of either the sum
of start + length- 1 or O. If start is greater than the number of characters in the
value expression, a zero-length expression is returned.

SELECT COUNT(*) ...
counts everything else in the selection

WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM(quantity) AS product_units,
SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

DMDB Seite 23

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer to its
own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t WHERE n < 100

SELECT sum(n) FROM t;
The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),

then a recursive term, where only the recursive term can contain a reference to the query's own output.
Such a query is executed as follows:

Solution:

WITH RECURSIVE enames AS (
SELECT first_name, last_name, emp_no, 0 AS len
FROM employees
UNION ALL
SELECT p.first_name, p.last_name, e.emp_no, e.len+1 AS len

DMDB Seite 24

notes temp

Mittwoch, 7. Juni 2017 18:39

FS15, Question 5

There is transitive dependencies: G -> E, | -> H, J so it is not in 3NF
Creating a 3NF:

A->B,C,D,E,F,I

D->A

EFI->G

El->H

El->J

I->K

G->E,l

=>
A->B,C,D,E,F, G H,IJ K
G->E,l
D->A

candidate keys: A, D

here, for example, the FD EFI->G does not fulfill any of the requirements for 3NF: it is not
trivial, EFI1 is not a superkey and G is not part of a candidate key.

Synthesis algorithm:

« make schema for every FD: ABCDEFI, DA, EFIG, EIHJ, IK, GEI
« delete the ones included in another: ABCDEFI, EFIG, EIHJ, IK
« first one contains a key, so we have all schemas

https://stackoverflow.com/questions/60174/how-can-i-prevent-sql-injection-in-php SQL injection

DMDB Seite 25

https://stackoverflow.com/questions/60174/how-can-i-prevent-sql-injection-in-php

Relational Algebra

Freitag, 3. Marz 2017 08:41

Relational Algebra

Selection
Projection
Cartesian Product
Join

Rename

Set Minus
Relational Division
Union
Intersection
Semi-Join (left)
Semi-Join (right)
> |eft outer Join

»< right outer Join

I © g X3 g

0 00D0DD0DO0DOOOOCOOQO
X XD C

(=)

Atoms: basic expressions

a relation in the database

a constant relation
Operators: composite expressions
Operators (composite expressions)
Selection: o, (E,)
Projection: Il (E,)
Cartesian Product: E; x E,
Rename: py (E), pa s (Ey)
Union: E; U E,
a Minus: E; - E,

[S S S)

//Recall cartesion Product from earlier in
https://www.systems.ethz.ch/sites/default/files/file/COURSES/2017
SPRING COURSES/DataModelingAndDatabases/upload/Ch3-RelationalModel.pdf

Selection returns table of relations

Projection

Projection is one of the basic operations of Relational Algebra. It takes a relation and a (possibly
empty) list of attributes of that relation as input. It outputs a relation containing only the specified

list of attributes with duplicate tuples removed. In other words the output must also be a relation.
Aus <http://stackoverflow.com/questions/3461099/what-is-a-projection>

A projection is a unary operation written as
where
is a set of attribute names. The result of such projection is defined as the set that is obtained when

all tuples in R are restricted to the set
Aus <https://en.wikipedia.org/wiki/Relational algebra#Projection .28.CF.80.29>

Cartesian Product X

DMDB Seite 26

https://www.systems.ethz.ch/sites/default/files/file/COURSES/2017_SPRING_COURSES/DataModelingAndDatabases/upload/Ch3-RelationalModel.pdf
https://www.systems.ethz.ch/sites/default/files/file/COURSES/2017_SPRING_COURSES/DataModelingAndDatabases/upload/Ch3-RelationalModel.pdf
http://stackoverflow.com/questions/3461099/what-is-a-projection
https://en.wikipedia.org/wiki/Unary_operation
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Relational_algebra#Projection_.28.CF.80.29

Cartesian Product mﬁm |

Result
L R A[B[C[DJE
Al B |C D | E a|by|cjdi|e
a, | b, | ¢ X d, | e “la| b |d; | &
a | b, | o d, | e a b 6|d e
a|b|g|d| e

jedes mit jedem
=> huge result set (n*m)
only useful in combination with a selection -> join

Natural Join
R 1 S combines the the selection of the entries that fulfill R and the entries that fulfill S. Returns a

table with all entries that are in at least one of the two relations.

R Lol S = HA:[..... Am, R.B1,..., R.BK, Cl....,(n{GR.BJ:S. Bl A..A R.Bk:S.Bk{RKS”
RxS
R-S R~S S-R
Al lA | ... |ALIB |B|...|B |C|GCY... | C,

The result of the natural join is the set of all combinations of tuples in R and S that are equal on their

common attribute names
Aus <https://en.wikipedia.org/wiki/Relational algebra#Projection .28.CF.80.29>

Threeway natural Join
Same but first join two of the three, and then join the third
student X attends ™ lecture

Theta-Join X
R and S must have no common attributes
Theta-Join ot
Two Relations:

» R(AL, ..., An) Rw S=a;(RxS)

» S(B1,.., Bm)

» A binary operator (<, >, =, =,<); (if “=", It is an equijoin)

» R and 5 must have no common attributes

R, 5

R 4, S

A, | B | B

same as natural join but instead of comparing whether tuples are equal to match, you compare it
using the binary operator

join variants

left join
keep lines on left side that didn't match on right

DMDB Seite 27

https://en.wikipedia.org/wiki/Relational_algebra#Projection_.28.CF.80.29

natural join (by matching tuples)
combining the lines that fit the same C (end of left line and start of right)

L R
ATBC cIDIE Result
a, | b | ¢ ba | d; e | A|B|C|D]|E
a| b lg G|d | b ¢ |d|e

left outer join
natural join AND unmatched tuples from only the left Relation table (these are now in a new

line)
» |eft outer join (natural join + unmatched tuples from L)
L R Result
Al B|C C|D]|E AlB | C|D]J|E
>4 -
ap| b | g G [dife|” ap | by | ¢ |di|e
Q| bl Gld e alblg

right outer join
same but keeping those unmatched from the right side instead of the left in a new line

full outer join
keeping both in new lines if not matched

e (full) outer join

L R Resultat
A[B]|C CID|E Al B C|D
a, | by | | > |, |d [e |7 [P b, | & |di]&
a, | b ¢ Gld e %15 G| - -
- - GG |d | &

Left/right semi join \ltimes \rtimes
Keep the lines of L/R for which a line in R/L matches

e |eft semi join (tuples from L matching tuples on R)

L R
Al BIlC clDIlE Resultat
a | by | g - C, | dy | e | AlBIC
| b g GG|ld | & albjg

Rename operator p

renaming of relation names

is needed to process self-joins and recursive relationships
e.g. two-level dependencies ("grandparents")

1_ILl.Pr‘erequisite(G-LZ. Follow-up=5216 » L1.Follow-up = L2.Prerequisite
(py (requires) x p,, (requires)))

Renaming of attribute names

PRequirement < Prerequisite (requires)

A rename is a unary operation written as
where the result is identical to R except that the b attribute in all tuples is renamed to an a attribute
Aus <https://en.wikipedia.org/wiki/Relational algebra#Projection .28.CF.80.29>

DMDB Seite 28

https://en.wikipedia.org/wiki/Unary_operation
https://en.wikipedia.org/wiki/Relational_algebra#Projection_.28.CF.80.29

Intersection

only applicable if both relations have the same schema (same attribute names and attribute
domains)

HPETSNT{LECture:I NIl {GLeueI=FP{Pr0fessor”

PersNr

&, Relational projections always return distinct tuples so DISTINCT is never needed. Duplicate tuples
are not permitted in the RA - that being one major difference between the relational model and the
28 sQL model.

sred Feb 2 '11 at 154

I] £ t fla NeWer
sqlvoge
'w/ 17.3k =1

Division

R -+ S Find lines in R that match with lines in S on their common elements but remove those
common elements. (needs to fulfill _all_in S)

The division is a binary operation that is written as R + S. The result consists of the

restrictions of tuples in R to the attribute names unique to R, i.e., in the header of R but

not in the header of S, for which it holds that all their combinations with tuples in S are

present in R. For an example see the tables Completed, DBProject and their division:

Completed DBProject Completed
Student Task Task +
Fred Database1 Database1 DBProject
Student
Fred Database2 Database2
Fred

Fred Compiler1

Sarah
Eugene | Database1

Eugene | Compiler1
Sarah Database1

Sarah Database2

Division can be simulated with other operators:
R+S5=TTg_g(R) —IT 5 _((IT 5 _5(R) x S) = R)

Division: Example I

R+S =TT g(R) —IT 5 {(IT ;5 (R} x S) — R)
a R =attends; S = Lecture
a II,(attends)
All students (who attend at least one lecture)
a IT,(attends) x Lecture
All students attend all lectures

a (I1,.,(attends) x Lecture) — attends
Lectures a student does not attend

a IT4((T1,(attends) x Lecture) — attends):
Students who miss at least one lecture

a Il (attends) - I (11 ., (attends) x Lecture) — attends)
Students who attend all lectures

DMDB Seite 29

SI & S2PL

Samstag, 5. August 2017 18:00

Snapshot Isolation:
For every variable you have written to (it's not about read from variables)
Abort if at commitment time you notice that somebody else already wrote to this variable
since your starting time. (even if not since your first actual action)

‘¢ Wieso abort statt einfach tiberschreiben? Und wieso nicht auch wenn jemand gelesen hat
aborten?

S2PL:

Like 2PL, but only unlock write-locks at commit. Read-locks may be released whenever in the
second phase.

DMDB Seite 30

Replication

Samstag, 5. August 2017 18:40

Forms of replication

Synchronous Update everywhere
o Advantages: o Advantages:
» No i,nc?nsistencies (identical » Any site can run a transaction
copies » Load is evenly distributed

» Reading the local c ields the i .
g Us e vaﬁréyy a Dlsadvaptages. '
> Changes are atomic » Copies need to be synchronized
a Dis dvaniages: A transaction has to
update all sites (longer execution
time, worse response time)

Primary Copy

o Advantages:
» No inter-si{e synchronization is

necessary (it takes place at the
dvanta eAS‘/;ntcrg?sggri;n is always primaryrgopy) ’
a :) i . .
f; ca? (go% dsresponse fime) y > l’n%ee la g(lj\g/tag: one site which has
a Disadvantages: o Disadvantages:

» Data inconsistencies § ’
» Alocal read does not always g {2%,{3?3 .3‘,;29 e e e
return the most up to date value » Reading the local cory may not
a

» Changes to all copies are not i
guaragntee p yield the most up to date value

» Replication is not transparent a

Replication Strategies F

Advantages: Advantages:
w Updates do not need to be coordinated No inconsistencies
g No inconsistencies Elegant (symmetrical solution)
= Disadvantages: Disadvantages:
£ Longest response time Long response times
s Only useful with few updates Updates need to be coordinated
ugz' Local copies are can only be read
Advantages: Advantages:
2 No coordination necessary No centralized coordination
g Short response times Shortest response times
e Disadvantages: Disadvantages:
= Local copies are not up to date Inconsistencies
?:’ Inconsistencies Updates can be lost (reconciliation)
z
< s
Primary copy Update everywhere

DMDB Seite 31

Exam Prep

Montag, 26. Februar 2018 09:06

Entity Relationship Model

is_ais not complete. A Person does not have to take part in the is_a relationship when the graph
says (man, woman) is_a person.

Also, is_a says that 'man’ is person. But it does not say that 'man' cannot be 'woman'.

There is no way to say a father cannot be his own son.

If we fix all except one object in a relationship, the relationship is uniquely identified or inexistent.
There are no two relationships where A and B are the same but Cis not, unless the line to C is
annotated 'N'.

Max-Min notation

It is 'how often can the same object participate in the relationship'.

Compared: the usual 1/N notation is 'how many different objects can participate in the relationship'.
min-max syntax: (0,1), (0,%) ...

sQL

JOIN without ON in mySQL generates a cross product. not a natural join. Best to always use ON with
postgresql for the DMDB guys.

Similarly, FROM A, B generates a cartesion product.

WHERE ... ALL(...)
WHERE ... ANY {(...)
are a thing

Cannot use an Aggregate in the WHERE clause
Union is distinct

Look at Check, Primary Key, Constraints, ON DELETE CASCATE and so on
Ex7 looks useful for that

Relational Algebra
Left Join # Left outer Join

FDs

Note that the decomposition of R into R1 and R2 is in fact dependency-preserving: (1)
is the only FD of R1, (2) and (3) are the FDs of R2, and toghether, they are a minimal
basis of the dependencies of R.

Find candidate keys systematically by computing minimal basis
Normal form

It is always possible to obtain a 3NF design without sacrificing lossless-join or dependency-
preservation.

Aus <https://www.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/Chapter7/node12.html>

What is 3NF vs BCNF?

DMDB Seite 32

https://www.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/Chapter7/node12.html

Problems can occur when there is a key consisting of multiple attributes

e.g. ABC. If A->B, there is redundancy. If A's are the same for a few

tuples, B's are the same, too, so we use a lot of storage, though there is no

need for it.

Join Algorithms
Solution

Operator

Minimal buffer size

Maximal buffer size

Replacement policy

MNested-Loop
Join

2 pages

all pages of the smaller
relation -+ 1 page of the
outer relation

Maost-Recent]y-Used

Grace Hash Join

souare root of the
number of pages of the
smaller relation + 1 page
of the outer relation

all pages of the smaller
relation + 1 page of the
outer relation

Sort Merge Join

sorting: 2 pages for the
external sort with
multiple merge steps or
sopuare rool of the
numbier of pages of the
larger relation if we only
perform one merge step
in the external sort.

merging: 2 pages

all pages of both relations

mimber of pages that can

of the relation

Table Scan 1 page be read in one I/ -
request
Index Scan 2 pages eutire B-Tree + all pages Least-Frequently-Used

For all of these holds that if yvou want to matenalize the output, you will need ope additional page to store

the output.

Look at old exercise 10 solution

What is "Indexed Nested loop Join"?

DMDB Seite 33

