
atomar: wenn prozesse die zwei nachrichten empfangen, die in der selben reihenfolge empfangen
kausal: wenn ein pfad von links nach rechts sendeereignis von X zum sendeereignis von Y führt

d.h. andere prozesse haben keinen einfluss darauf obs fifo ist oder nicht
FIFO: nur zwei prozesse betrachtend, kam die zuerst gesendete nachricht auch zuerst an?

atomar + FIFO ≠ kausal (simples beispiel: zwei unabhängige sendungen)
kausal + atomar := virtuell synchron
atomic

x und y auf dem selben prozess und x vor y war, oder
x eine nachricht M sendet und y die nachricht M empfängt, oder
Transitivität

x "happened before" y iff

obviously geht es nicht rückwärts: nicht jedes vorheriges ereignis ist kausal abhängig weil nicht
auf dem selben prozess.
(Evt geht es bei Vector clocks)

Uhrenbedingung: If happened before, then has smaller timestamp. Reverse is not always applicable.

Initially all clocks are zero.•
Each time a process experiences an internal event, it increments its own logical clock in the vector by
one.

•

Each time for a process to send a message, it must increment its own clock (as in the bullet above) and
then send a copy of its own vector.

•

Each time a process receives a message, it increments its own logical clock in the vector by one and
updates each element in its vector by taking the maximum of the value in its own vector clock and the
value in the vector in the received message (for every element).

•

Aus <https://en.wikipedia.org/wiki/Vector_clock>

1. What are the main advantages of using Vector Clocks over Lamport timestamps?
Lamport guarantees that if is causally dependent on , then .
However, the inverse does not hold: Just because something has a larger timestamp does not mean
it depends on .

Vector clocks allow us to find out whether messages and are causally related, because they

zusammenfassung
Samstag, 6. Januar 2018 14:02

 Distributed Systems Seite 1

https://en.wikipedia.org/wiki/Logical_clock
https://en.wikipedia.org/wiki/Vector_clock

Vector clocks allow us to find out whether messages and are causally related, because they
provide a partial order instead of a total order. A Vector clock basically contains a Lamport
timestamp for every thread. If and only if all those entries in are smaller or equal and one of them
is strictly smaller than the corresponding entries in , the message happened-before the message
 .
This means we can also find out that two messages are independent.

Causal consistency vs Sequential Consistency vs Quiescent Consistency

 Distributed Systems Seite 2

Causal consistency vs Sequential Consistency vs Quiescent Consistency
Sequential is when there is one sequential order to which all processors view fits (doesn't mean that
it must be run in that way). Causal is a partial order (like lamport clocks). Reads influence following
writes. Writes might happen in any order though, if there is no causality.
Sequential implies causal.
Quiescent Consistency describes a completely clear program order - no overlaps are allowed.

Linearizability vs Serializability
Linearizability says that writes/reads appear to be instantaneous. After a read, any further reads will
return the same or a newer value.
Serializability is a guarantee about transactions; It says that the code is equivalent to some serial
execution.

Consistent Hashing
Stores the values with keys closest to the nodes ID.

Durchmesser eines Graphen

Längster kürzester pfad von vertex zu vertex. beinhaltet die vertices.
"Durchmesser eines gittergraphen", "homogenität" als kriterium für bestimmte anwendungen, …

Game Theory
Price of Anarchy: Global maximum of welfare of all divided by the minimum in an equilibrium

Consensus

Validity
Der Entscheidungswert ist der Inputwert von einem Knoten
Termination
Alle korrekten Knoten terminieren in endlicher Zeit
Agreement
Alle korrekten Knoten entscheiden sich für den gleichen Wert

Quorum Systems
A Quorum System is a set of quorums such that every two quorums intersect.
The load induced by access strategy Z on a quorum system S is the maximal load induced by Z on any
node in S.
(The load on a node is the sum of the load onto each quorum the node is in)

The load of a quorum system is the load induced by the 'best' access strategy, i.e. the minimum of
these maxima.

The work of a quorum is the number of nodes in it.
The work induced by access strategy Z on a quorum system S is the expected number of nodes
accessed (i.e. Probability of quorum times work of quorum, summed up for all quorums in the
system)

The work of a quorum system is the minimal work possible by changing the access strategy Z.

But the Access strategy Z must be the same for both load and work.

For any Quorum system,

 Distributed Systems Seite 3

S is f-resilient if it can suffer f nodes dying and there is still at least one working quorum.

the failure-probability is the chance that at least one node of every quorum fails

A quorum System is called minimal if there is no quorum subset of an other quorum.

A quorum System is f-disseminating if every intersection of two quorums consists of at least f+1
nodes and for any set of f byzantine nodes, there is at least one quorum without byzantine nodes
(minimum n=3f). If the data is self-verifying, then this is enough (e.g. through authentication with
signed messages).
It is f-masking if the intersection always contains 2f+1 nodes and there is at least one quorum
without byzantine nodes (minimum n=4f). That means that the correct nodes outvote the byzantines
in the intersection and at least one quorum operates correctly.
It is f-opaque if for any two quroums, the number of correct nodes in the intersection is larger than
the number of byzantine nodes in Q2 plus the number of nodes in Q1 but not Q2

Wahrheitsgemässe Auktion
Wenn es nie besser ist, über sein gebot zu lügen.
2nd-price auction ist truthful, repeated 2nd price für ununterscheidbare Artikel nicht (weil man
warten kann und es billiger wird), 3rd price nicht. repeated 2nd-price für unterscheidbare Artikel
schon.

Hashing
Locks

Configuration Tree
This model does not work for algorithms that use the message delay. All messages are transmitted in
at most one timestep and any local computations are done instantly.

"v-valent" if a configuration already determines the value. e.g. if all input values are 0, the
configuration is 0-valent.
C is critical if it is bivalent but all configurations that are direct children of it are univalent.

King Algorithm
n = 3f+1

 Distributed Systems Seite 4

Jede node ist mal king. Wenn ein king etwas bestimmt, weil nicht nodes für dasselbe
stimmten, dann wird das von nodes die auch wenig erhalten haben akzeptiert. D.h. es kann
passieren dass der erste king byzantine ist und jede node eine andere input value hat - dann würde
sich die byzantine meinung durchsetzen.

Shared Coin
(only about faulty nodes, not byzantine)

=> Termination, Correct-input-validity, Agreement

Inputs of possibly faulty nodes are not really considered to be the output and that's fine as long as
some correct input is the output.

Lamport

 Distributed Systems Seite 5

Increase counter when sending a message. When receiving, set counter to

where other is the timestamp of the other process, contained in its message.
Lamport requires FIFO
Zum en-queue-en die timestamps des senders verwenden, sonst ist es global nicht konsistent. (Noch
ohne addition vom +1)
To actually enter the critical section, we need any message with a later timestamp than ours from
every thread. That means that no thread can later come and say they have a lower number.
Additionally, the timestamp must obviously be the lowest in the local queue.

 Distributed Systems Seite 6

Hash Chains

 Distributed Systems Seite 7

2PC
Coordinator sends VOTE-REQ to all
Participants recieve that and vote YES or NO

all YES => commit and sends COMMIT

Those who voted NO have already aborted themselves
some NO => abort and sends ABORT to all which voted YES

Coordinator waits for all participants until first NO

Participant recieves COMMIT or ABORT and does that, then stops

This Protocol meets the 5 AC rules:
AC1: Every processor decides the same
AC2: Any processor arrving at a decision stops => Cannot reverse its decision
AC3: Controller only decides COMMIT if nobody voted NO => No imposed COMMIT
AC4: If there are no failures and all processors voted YES, the decision will be COMMIT (nontriviality)
AC5: If all failures are repaired and no more failures occur for sufficiently long, then all processors
will eventually reach a decision (liveness)

For AC5 we need to extend the protocol and ask around in case of timeout.

Uncertainity Period: When a participant times out waiting for a decision and everybody is in the
same situation when asking around, all processors will block. This can happen if the coordinator fails
after receiving all YES votes but before sending any COMMIT message
Why can't every participant then just ask everybody else? If one says no, abort, else say yes. Because
the failed coordinator might want to abort.
There's also the possibility that the coordinator and a participant fail. In that case, it is impossible to
say whether this participant has recieved the COMMIT and committed or whether we should abort
because no COMMIT message was sent, so we have to wait.

Persistence through logging to node disk.
YES logs before sending, NO logs before or after. Because if it crashes in between and finds neither a
YES nor a NO log record, it aborts unilaterally.
Same for the coordinator with COMMIT or ABORT.
Reason is probably that data to evaluate is then no longer in memory and cannot be reevaluated if
not yet decided.
https://courses.cs.washington.edu/courses/csep552/13sp/lectures/4/2pc.pdf

Linear 2PC
Less messages by moving on in a daisychain. Total number of messages is not 3n but only 2n
because a NO propagates in both directions and a COMMIT through the whole line. The coordinator
seems to be the end of the chain.

3PC
Doesn't block => liveness
AC1: every node decides the same
AC2: no node changes its decision
AC3: no imposed COMMIT
AC4: nontriviality: if there are no failures and everybody voted YES, then the decision will be
COMMIT
AC5: If all failures are repaired and there aren't any more for sufficiently long, then the protocol will
terminate with a decision (liveness)

Assuming no communication failures.
NB rule: Nobody can decide to commit as long as anybody is uncertain.

2PC vs 3PC
Donnerstag, 8. Juni 2017 07:17

 Distributed Systems Seite 8

https://courses.cs.washington.edu/courses/csep552/13sp/lectures/4/2pc.pdf

Difference to 2PC: PRE-COMMIT -> ACK -> COMMIT
So if the coordinator fails after VOTE-REQ and all processors vote YES, then they would all be in
uncertainity in 2PC. In 3PC it is guaranteed that nobody has decided to commit while anybody is
uncertain. So if everybody is uncertain, they can find that out and safely abort. To make sure,
nobody is uncertain before deciding, the coordinator needs the PRE-COMMIT. Now if the
coordinator crashes after sending PRE-COMMIT, participants know what is going to happen but have
to ask around to make sure everybody is certain before committing.
If coordinator times out waiting for votes, ABORT. If coordinator times out waiting for ACKs, ignore
those and send the others a commit. (some also say to wait. The appended solutions say
otherwise) They can later ask around to find out that they should commit.
If a node fails after recieving PRE-COMMIT, it has to ask around to make sure nobody is uncertain.

Again, logging YES before sending because if crashes and no YES there, then abort. It seems like
sending precommits is not logged, so if the coordinator crashes after starting 3PC but has no
decision in its log, it has to ask around (maybe somebody already got a precommit)

Not used in practise because probability of blocking is small enough and 3PC is too expensive.

 Distributed Systems Seite 9

Practical Byzantine Fault Tolerance

Messages are signed•
One node is considered primary (might change over time)•
Messages might not have their order preserved•

If Backup Nodes detect faulty primary node, they start a new view v where the next Node is now the
Primary. ()
The primary picks consecutive sequence numbers. Backup nodes verify through intercommunication
that they all have received the same order.

No correct node will execute a request with the sequence number belonging to a different request.
Nodes will collect confirmation messages for a decision that a request should be executed by asking
 nodes, including itself.

If we have two sets of nodes, then there exists a correct node in their intersection.

2f+1 because that's the majority of the correct nodes (n = 3f+1)

Agreeing on a unique order of requests within a view
1. primary sends message to all backups with a specified sequence number.
2. Backups send messages to all nodes to state that they agree.
3. All nodes send messages to all nodes, execute the request and inform the client.

PBFT
Dienstag, 9. Januar 2018 10:30

 Distributed Systems Seite 10

The client only needs one correct reply, so it waits for reply messages.•
Once a single correct node executed the request, all correct nodes will eventually, with the
same sequence number.

•

If a client resends a request, nodes can look at the timestamp to figure out if they have already
executed it.

•

A correct backup does not send for the same more than
once. (Neither does a primary with a)

•

 Distributed Systems Seite 11

 Distributed Systems Seite 12

Ticket
Expires if the server issues a new one.

Paxos
Dienstag, 9. Januar 2018 13:51

 Distributed Systems Seite 13

 Distributed Systems Seite 14

 Distributed Systems Seite 15

 because in line 5 there could be multiple proposals later if the byzantines send different
values to different nodes. e.g. when half of the correct nodes value 0 and half value 1, then the
byzantines could choose what value a node proposes, because that node would then receive n/2

We need f+1 phases so that at least one king is correct, otherwise the byzantine nodes could send
every correct node a different value as king and they would never agree.

King Algorithm
Dienstag, 9. Januar 2018 15:26

 Distributed Systems Seite 16

 Distributed Systems Seite 17

Choose a set of hash functions1.
Hash the filename2.
Hash the current nodes name3.
Store a copy of the file in the node where (1) and (2) differ the least for any hash function used4.

Consistent Hashing

Number of stored values expected is

Split Ordered Lists
Not relevant for this exam but This paper explains it. I stumbled about this question which I already
had upvoted before 2017 apparently.

Hashing
Mittwoch, 10. Januar 2018 08:05

 Distributed Systems Seite 18

http://www.cs.ucf.edu/~dcm/Teaching/COT4810-Spring2011/Literature/SplitOrderedLists.pdf
https://stackoverflow.com/questions/25299572/why-does-the-split-ordered-hash-table-use-reversed-key

Array Lock / Anderson Lock
Every thread has an array element that is set to false unless they have the permission to acquire the
lock.
Think of the array as a ring, because we calculate indices modulo its size.
There is a shared AtomicInteger pointing to the tail. A new thread increases this integer and starts
spinning on the (previous) tail flag. once it becomes true, the thread enters the critical section.
When it leaves the critical section, it sets the flag in the tail to true.
If no thread is spinning on it, the next thread will read true as soon as it enters, otherwise the
spinning starts again.
The ring needs to provide a flag for every of the n processes. If there are L locks, that takes Memory
of .
Each thread only spins on one memory location so there is not much invalidation traffic.

CLH Queue Lock
Every thread creates a Qnode which has a successor and a boolean field wantLock.
When a thread queues up, it uses an atomic GAS to set itself as the new tail and then starts spinning

on its predecessors wantLock. Once it is false, the thread enters the critical section. … Now it
wants to leave again. It sets its own wantLock to false. Its Qnode might now be the tail or
spun on, so we leave it existent. But our predecessor does not need their Qnode anymore,
so we take that Qnode and reuse it next time we want to lock. That way, we only need n
memory allocated. (Bad on NUMA though).
That means that if we assume a thread to only hold one lock at a time and we have L locks,
we only need to store n Qnodes (for every thread one) and additional L Qnodes as tails of
empty queues.

MCS Queue Lock
Just like CLH, but every thread owns its own flag, so it's better on NUMA nodes.
When a thread queues up, it sets itself as the new tail and spins on its own hasLock. Once it is true,
the thread enters the critical section.
To leave, if it has a successor, it sets the hasLock of the successor to true. Our successor does not
depend on us, so we can reuse our node to join the same or a different queue lock again.
If the next field is null, it uses compareAndSet to set the tail to null if the tail is currently this thread.
if that worked, yey. If it didn't, some other thread has already set itself to tail but not yet set itself to
next, so we have to spin on our next flag.
Because every thread can reuse its Qnode and we assume that every thread only holds one lock, we
have Memory usage of (because we still need the tail pointers)

Locks
Mittwoch, 10. Januar 2018 09:18

 Distributed Systems Seite 19

Braess paradoxon
Mittwoch, 10. Januar 2018 13:46

 Distributed Systems Seite 20

FloMo_DistributedSystemsPart1

FLOMO
Mittwoch, 10. Januar 2018 14:03

 Distributed Systems Seite 21

 Distributed Systems Seite 22

 Distributed Systems Seite 23

 Distributed Systems Seite 24

 Distributed Systems Seite 25

 Distributed Systems Seite 26

 Distributed Systems Seite 27

 Distributed Systems Seite 28

 Distributed Systems Seite 29

snapshot problem
need a global view despite continuous changes

phantom-deadlocks
The observer might see a deadlock because B waits for C, C for A and A for B. But that could have
changed in the meantime (every wait is in a different timestep).

clock synchronisation
Assume drift is linear, but they can also have an offset if there is no drift

FIFO
send order = receive order
but allows messages to indirectly surpass other message via a different channel.

Causal Ordering
send order = receive order
indirectly surpassing is not allowed - anything causally dependent on the sending of A will not be
received bevor A.

Priority
How to prioritize and how to ensure fairness and neutrality and what fairness means are unclear.

Failure Modes
Crash/fail-stop
time failure (too early or too late)
byzantine/rogue behaviour
problem during sending / receiving

Communication types
message oriented
unidirectional
fire&forget
sending process can continue working directly after sending message

task oriented
bidirectional
result of request will be passed back to sender. Client waits until the response has been received

blocking send
The sender waits until it has a guarantee that the message has been received. The receiver might
send the ACK before actually processing the message.

blocking send and receive. The sender freezes until the receiver was ready, processed the
message and responded with ACK

•

"virtual simultaneity" : rubber-band movement possible so that simultaneous events are
simultaneous

•

Deadlocks if cyclic wait-for-graph (both processes are receiving or sending)•

synchronous communication

async communication
difficult debugging but is faster and less coupling. higher degree of parallelism, less chance for

FLOMO extracted
Mittwoch, 10. Januar 2018 14:12

 Distributed Systems Seite 30

difficult debugging but is faster and less coupling. higher degree of parallelism, less chance for
deadlocks based on communication

maybe-semantic no repetition of request easy and efficient useful for lookup services
at-least-once semantics automatically repeat requests stateless protocol on server side (no
duplicates can be discovered) nice for idempotent operations (reading a file) maybe uses more
resources than explicitly necessary
at-most-once semantic can discover duplicates, then just resends persisted replies nice for non-
idempotent stuff more expensive than at-least-once
exactly-once not really possible because if crashes occur no computations take place

REST

 Distributed Systems Seite 31

 Distributed Systems Seite 32

 Distributed Systems Seite 33

 Distributed Systems Seite 34

 Distributed Systems Seite 35

broadcast a random value. If a majority answers with one value, propose this value => at most one
value was proposed.
Then wait for a majority of propose messages. If all want the same, then we take that value and
terminate after broadcasting it again for this and the next round. If some proposed null, then store
the v but not don't terminate yet because others need our knowledge. Broadcast that value and
restart.
If nobody of that majority proposed any value, choose a different random value, broadcast it and
restart.

Some nodes propose, others don't because they see some disagreement within the (not complete,
only the majority) set they receive.
We wait for a majority only, because that is enough. But then it is possible that other nodes still
disagree (didn't get the value from a majority of broadcasts and thus propose null). So the other
nodes will stay random until they get at least one value proposal - this must happen if we wait for a
majority of proposals and there actually is a majority of value proposals. If there is a majority of
value proposals, we're basically done: Everybody receives at least one and in the next round
broadcasts and proposes that value. Otherwise, the setting changes randomly until a large number
of nodes get the same value by chance so that the majority will propose the value.

algorithm dump
Mittwoch, 7. Februar 2018 18:19

 Distributed Systems Seite 36

Paxos does not guarantee termination. E.g. if no client ever gets a majority

 Distributed Systems Seite 37

