zusammenfassung

Samstag, 6. Januar 2018 14.02

atomar: wenn prozesse die zwei nachrichten empfangen, die in der selben reihenfolge empfangen
kausal: wenn ein pfad von links nach rechts sendeereignis von X zum sendeereignis von Y fiihrt
FIFO: nur zwei prozesse betrachtend, kam die zuerst gesendete nachricht auch zuerst an?

d.h. andere prozesse haben keinen einfluss darauf obs fifo ist oder nicht
atomar + FIFO # kausal (simples beispiel: zwei unabhangige sendungen)
kausal + atomar := virtuell synchron
atomic

Py o .
1) Ist atomar *\ " / /Nu:ht kausal!

) P2 /" Atomar: P3 und
auch kausal: P4 empfangen

P3 beide M, N — und
zwar in gleicher
P4 Reihenfolge

2) Ist atomar
wenigstens FIFO?

B\

3) Ist atomar + FIFO evtl. kausal?

x "happened before" y iff
x und y auf dem selben prozess und x vor y war, oder
x eine nachricht M sendet und y die nachricht M empfangt, oder
Transitivitat

Uhrenbedingung: If happened before, then has smaller timestamp. Reverse is not always applicable.
obviously geht es nicht riickwarts: nicht jedes vorheriges ereignis ist kausal abhangig weil nicht
auf dem selben prozess.

(Evt geht es bei Vector clocks)

Initially all clocks are zero.

Each time a process experiences an internal event, it increments its own logical clock in the vector by
one.

Each time for a process to send a message, it must increment its own clock (as in the bullet above) and
then send a copy of its own vector.

Each time a process receives a message, it increments its own logical clock in the vector by one and
updates each element in its vector by taking the maximum of the value in its own vector clock and the
value in the vector in the received message (for every element).

Aus <https://en.wikipedia.org/wiki/Vector clock>

1. What are the main advantages of using Vector Clocks over Lamport timestamps?

Lamport guarantees that if B is causally dependent on 4, then L(A) < L(B).

However, the inverse does not hold: Just because something has a larger timestamp does not mean
it depends on A.

Distributed Systems Seite 1

https://en.wikipedia.org/wiki/Logical_clock
https://en.wikipedia.org/wiki/Vector_clock

Vector clocks allow us to find out whether messages A and B are causally related, because they
provide a partial order instead of a total order. A Vector clock basically contains a Lamport
timestamp for every thread. If and only if all those entries in A are smaller or equal and one of them

is strictly smaller than the corresponding entries in B, the message A happened-before the message
B.

This means we can also find out that two messages are independent.

4. Was ist der Unterschied zwischen synchroner, mitteilungsbasierter und synchroner, aut-
tragsorientierter Kommunikation ohne Riickgabewert?

Lisungsvorschlag: Im ersten Fall wartet der Sender nur, bis eine Bestéitigung des Ein-

gangs der Mitteilung vorliegt. Im sweiten Fall wartet er, bis auf der Empfiingerseite der
Aufirag tatsdchlich abgearbeitet wurde.

RPC-Fehlersemantik

Operationale Sichtweise:

- Wie wird nach einem Timeout auf (vermeintlich?) nicht eintreffende
Nachrichten, wiederholte Requests, gecrashte Prozesse reagiert?

1) Maybe-Semantik:
- Keine Wiederholung von Requests
- Einfach und effizient

- Keinerlei Erfolgsgarantien — nur ausnahmsweise anwendbar
Migliche Anwendungsklasse: Auskunftsdienste (Anwendung kann
es evtl. spiiter noch einmal probieren, wenn keine Antwort kommt)

§) 1) und 2) werden etwas euphemi-
2) At-least-once-Semantik: | stisch als “best effort” bezeichnet

- Hartnickige automatische Wiederholung von Requests
- Keine Duplikatserkennung (zustandsloses Protokoll auf Serverseite)

- Akzeptabel bei idempotenten Operationen (z.B. Lesen einer Datei)

3) At-most-once-Semantik:

- Erkennen von Duplikaten (Sequenznummenrn, log-Date: etc.)

- Keine wiederholte Ausfithrung der Prozedur, sondern evtl.
erneutes Senden des (gemerkten) Reply

- Geeignet auch fir nicht-idempotente Operationen ist “‘fj"iﬂ““}’
once” mach-
bar?

!-f"’

- May-be — At-least-once — At-most-once — ...
ist zunehmend aufwindiger zu realisieren
- man begniigt sich daher, falls es der Anwendungsfall gestattet, oft
mit einer billigeren aber weniger perfekten Fehlersemantik

- Motto: so billig wie méglich, so , perfekt™ wie notig
Vi Tes E Wla I l T

Distributed Systems Seite 2

Causal consistency vs Sequential Consistency vs Quiescent Consistency

Sequential is when there is one sequential order to which all processors view fits (doesn't mean that
it must be run in that way). Causal is a partial order (like lamport clocks). Reads influence following
writes. Writes might happen in any order though, if there is no causality.

Sequential implies causal.

Quiescent Consistency describes a completely clear program order - no overlaps are allowed.

Linearizability vs Serializability

Linearizability says that writes/reads appear to be instantaneous. After a read, any further reads will
return the same or a newer value.

Serializability is a guarantee about transactions; It says that the code is equivalent to some serial
execution.

Consistent Hashing

Stores the values with keys closest to the nodes ID.
Reason: Consistent und Linear Hashing kinnen die selben Hypergraphen
verwenden. Der Hauptvorteil ist, dass bei Consistent Hashing belichig Kno-
ten hinzukommen/verschwinden kénnen mit minimalem Aufwand. Bei Li-
nearem Hashing milssen jedesmal die Hilfte der Keys umverteilf werden, da
die Zuteilung Abingig von der Anzahl Knoten ist.

Durchmesser eines Graphen
"Durchmesser eines gittergraphen”, "homogenitat" als kriterium fiir bestimmte anwendungen, ...
Langster kiirzester pfad von vertex zu vertex. beinhaltet die vertices.

Game Theory
Price of Anarchy: Global maximum of welfare of all divided by the minimum in an equilibrium

Consensus

Validity

Der Entscheidungswert ist der Inputwert von einem Knoten
Termination

Alle korrekten Knoten terminieren in endlicher Zeit
Agreement

Alle korrekten Knoten entscheiden sich fiir den gleichen Wert

Quorum Systems

A Quorum System is a set of quorums such that every two quorums intersect.

The load induced by access strategy Z on a quorum system S is the maximal load induced by Z on any
nodeinS.

(The load on a node is the sum of the load onto each quorum the node is in)

L(w)=) PAQ

QES;ViEQ
The load of a quorum system is the load induced by the 'best' access strategy, i.e. the minimum of
these maxima.

The work of a quorum is the number of nodes in it.

The work induced by access strategy Z on a quorum system S is the expected number of nodes
accessed (i.e. Probability of quorum times work of quorum, summed up for all quorums in the
system)

W,(5) =) P(@ - W(Q)
QES
The work of a quorum system is the minimal work possible by changing the access strategy Z.

But the Access strategy Z must be the same for both load and work.
1

For any Quorum system, L(S) > 7

Distributed Systems Seite 3

S is f-resilient if it can suffer f nodes dying and there is still at least one working quorum.
the failure-probability is the chance that at least one node of every quorum fails
A guorum System is called minimal if there is no quorum subset of an other quorum.

A quorum System is f-disseminating if every intersection of two quorums consists of at least f+1
nodes and for any set of f byzantine nodes, there is at least one quorum without byzantine nodes
(minimum n=3f). If the data is self-verifying, then this is enough (e.g. through authentication with
signed messages).

It is f-masking if the intersection always contains 2f+1 nodes and there is at least one quorum
without byzantine nodes (minimum n=4f). That means that the correct nodes outvote the byzantines
in the intersection and at least one quorum operates correctly.

It is f-opaque if for any two quroums, the number of correct nodes in the intersection is larger than
the number of byzantine nodes in Q2 plus the number of nodes in Q1 but not Q2

Wahrheitsgemadsse Auktion

Wenn es nie besser ist, (iber sein gebot zu liigen.

2nd-price auction ist truthful, repeated 2nd price fiir ununterscheidbare Artikel nicht (weil man
warten kann und es billiger wird), 3rd price nicht. repeated 2nd-price fir unterscheidbare Artikel
schon.

A) Nein. Gegenbeispiel: alle Wertschiitzungen sind verschieden und jeder bietet seine Wertschiit-
zung. In dieser Situation ist es fiir den Bieter mit der zweithéichsten Wertschitzung vorteil-
haft, mehr als das bisherige hchste Gebot zu bieten.

B

—

Nein, das ist kein wahrheitsgemisser Mechanismus. Gegenbeispiel: alle Wertschiatzungen sind
verschieden und jeder bietet jede Runde seine Wertschiitzung (0, falls er bereits einen Arti-
kel erstanden hat). In dieser Situation ist es fiir den Bieter mit der hochsten Wertschiitzung
vorteilhaft, in den ersten Runden ein niedriges Gebot abzugeben, so dass er vorerst keine
Auktion gewinnt. Wenn er dann spiter seine Wertschfitzung bietet, gewinnt er einen Artikel,
aber zahlt einen tieferen Preis als er in der ersten Runde gezahlt hiitte. da in der Zwischen-
zeit die Bieter mit den nfichsthéichsten Wertschiitzungen bereits Artikel erhalten haben und
ausgestiegen sind.

Wahrheitsgemiisser Mechanisimus: nur eine Auktionsrunde, in der die & hichsten Gebote die
 Artikel jeweils zum Preis des k + 1-hdchsten Gebots erstehen.

Hashing
Locks

Configuration Tree
This model does not work for algorithms that use the message delay. All messages are transmitted in
at most one timestep and any local computations are done instantly.

"v-valent" if a configuration already determines the value. e.g. if all input values are 0, the
configuration is 0-valent.

Cis critical if it is bivalent but all configurations that are direct children of it are univalent.

King Algorithm
n=3f+1

Distributed Systems Seite 4

Algorithm 3.14 King Algorithm (for f < n/3)
1: & = my input value
2: for phase =1 to f+ 1 do

Round 1
3. Broadeast value(x)

Hound 2

-

if some value(y) received at least n — [times then
Broadcast propose(y)

end if

if some propose(z) received more than f times then
T =z

end if

Round 3

oo

=

10: Let node »; be the predefined king of this phase i
11: The king v; broadcasts its current value w

12: if received strictly less than n — f propose(z) then
13: T =

14: end if

15: end for

Lemma 3.15. Algorithm 3.14 fulfills the all-same validily.
Jede node ist mal king. Wenn ein king etwas bestimmt, weil nicht n — f nodes fur dasselbe
stimmten, dann wird das von nodes die auch wenig erhalten haben akzeptiert. D.h. es kann
passieren dass der erste king byzantine ist und jede node eine andere input value hat - dann wiirde
sich die byzantine meinung durchsetzen.

Shared Coin
(only about faulty nodes, not byzantine)

Algorithm 2.22 Shared Coin (code for node)

I: Choose local coin o, = () with probability 1/n, else ¢, = 1
2 Broadcast myCoin{c,)

3 Wait for n — f coins and store them in the local coin set O,
; Broadeast mySet(Cy)

-

5 Wait for n — f coin sets

6: if at least one coin is) among all coins in the coin sets then
7 return {)

& else

g return 1

1 end if

Remarks:

& Since al most [nodes crash, all nodes will always receive n — [coins
respectively coin sels in Lines 3 and 5. Therelore, all nodes make
progress and termination is guaranteed.

» We show the correctness of the algorithm for [< n/3. To simplify
the proof we assume that n = 3f + 1, e, we assume the worst case.

=>Termination, Correct-input-validity, Agreement

Inputs of possibly faulty nodes are not really considered to be the output and that's fine as long as
some correct input is the output.

Lamport

Distributed Systems Seite 5

12 Lamport-Zeit — Wechselseitiger Ausschluss

S
o

@ &

o XA

Py
&
o

Abbildung 3: Wechselseitiger Ausschluss mit Lamport-Zeit

In Abb. 3 ist ein Zeitdiagramm dargestellt mit Nachrichten von drei Prozessen. Prozesse |
und 3 bewerben sich um den exklusiven Zugriff auf eine gemeinsame Ressource. Die Prozes-
se wenden das aus der Vorlesung bekannte Verfahren zum wechselseitigen Ausschluss an, das
Lamport-Zeit und verteilte Warteschlangen benutzt.

1. Geben Sie die Sende- und Empfangszeitstempel fiir jedes Ereignis an.

Lisungsvorschlag:
st
e @
P1 8
[8]
p2 & ’
8]
0
P3) >

Increase counter when sending a message. When receiving, set counter to max(other + 1, mine +
1)

where other is the timestamp of the other process, contained in its message.

Lamport requires FIFO

Zum en-queue-en die timestamps des senders verwenden, sonst ist es global nicht konsistent. (Noch
ohne addition vom +1)

To actually enter the critical section, we need any message with a later timestamp than ours from
every thread. That means that no thread can later come and say they have a lower number.
Additionally, the timestamp must obviously be the lowest in the local queue.

Distributed Systems Seite 6

16 Diffie-Hellman
In der Vorlesung wurde der Diffie-Hellman-Algorithmus besprochen.

1. Fiir was wird er verwendet?

Lisungsvorschlag: Diffie-Hellman stellt ein krvptografisches Protokoll dar. Es dient zur
Erstellung eines geheimen Schliissels zwischen Kommunikationspartnern iiber einen un-
sicheren Kanal.

2. Beschreiben Sie kurz das Verfahren.

Lésungsvorschlag: Zwei Kommunikationspartner (A und B) kennen beide eine (grosse)
Primzahl p und eine Primitivwurzel ¢ mod p (mit 2 < ¢ < p — 2). Diese kinnen wie bei
Sun-RPC vorgegeben sein, oder auch iiber den unsicheren Kanal ausgetauscht werden.

A und B wiihlen je eine Zufallszahl a bzw. b (aus der Menge zwischen 1 und p — 2), die
geheimgehalten werden muss. Aus den gegebenen Werten berechnen die Kommunikations-
parter a = ¢® mod p bzw. = ¢® mod p. Diese werden ausgetauscht, d.h. A sendet o
an B und B sendet 3 an A.

Jetzt kiinnen A und B jeweils den gemeinsamen, geheimen Schliissel berechnen: G4 =
A% mod p und G g = a® mod p.

Da (¢ mod p)® mod p = (¢* mod p)® mod p gilt, gilt auch G 4 = G .

3. Was ist ein moglicher Angriff und wie knnte man sich dagegen verteidigen?
Liosungsvorschlag: Als “man in the middle” kinnte man in den Kanal zwischen zwei
Kommunikationspartnern eindringen und sich jeweils als Gegenstelle ausgeben. So wer-
den fiir beide Teilstrecken eigene Schliissel ausgehandelt und der Angreifer kann die Nach-
richten transparent weiterleiten, sie dabei aber mitlesen und auch verdndern. Dieser An-
eriff kann durch das Interlock-Protokoll erkannt werden.

Hash Chains
14 Einwegfunktionen

Mit Einwegfunktionen lassen sich Einmalpassworter erzeugen und leicht iiberpriifen. f sei eine
Einwegfunktion und r; ein initiales Passwort, aus dem eine Passwortkette erzeugt wird:
SR S RS S Y iR
1. Um die Passworter zur Authentisierung nutzen zu kénnen, muss r,, zuniichst zum Server
S iibertragen werden. Welche der folgenden Anforderungen miissen erfiillt sein:

a) Ein Angreifer darf nichts iiber x,, erfahren, die Ubertragung muss also geheimnis-
bewahrend erfolgen.

b) Es muss sichergestellt sein, dass x,, bei der Ubertragung nicht veriindert wird.
Laosungsvorschlag: i. nicht erforderlich, ii. erforderlich

o

. Wir nechmen an, es sei n = 100. Dem Server S wird xo bekannt gemacht. Ein Client
(" schreibt die Werte xy, x2, ..., rgg in eine Liste. Bei der ersten Anmeldung an S ver-
wendet er xgg und streicht diesen Wert von der Liste. Beim zweiten Mal verwendet (' aus
Versehen xsg (statt rgs). Welche Gefahr besteht, wenn dieser Wert von einem Angreifer
abgehort wird und S den Anmeldeversuch einfach ignoriert, weil f(xrgg) # x99?

Losungsvorschlag: Man setzt normalerweise voraus, dass die Hashfunktion bekannt ist.
Ein Angreifer konnte daher xsg, xoo, ... res berechnen und einsetzen, d.h. er kénnte sich
bis zu 11 mal anmelden.

Distributed Systems Seite 7

2PCvs 3PC

Donnerstag, 8. Juni 2017 07:17

2PC
Coordinator sends VOTE-REQ to all
Participants recieve that and vote YES or NO
Coordinator waits for all participants until first NO

all YES => commit and sends COMMIT

some NO => abort and sends ABORT to all which voted YES

Those who voted NO have already aborted themselves

Participant recieves COMMIT or ABORT and does that, then stops

This Protocol meets the 5 AC rules:

AC1: Every processor decides the same

AC2: Any processor arrving at a decision stops => Cannot reverse its decision

AC3: Controller only decides COMMIT if nobody voted NO => No imposed COMMIT

AC4: If there are no failures and all processors voted YES, the decision will be COMMIT (nontriviality)
ACS: If all failures are repaired and no more failures occur for sufficiently long, then all processors
will eventually reach a decision (liveness)

For AC5 we need to extend the protocol and ask around in case of timeout.

Uncertainity Period: When a participant times out waiting for a decision and everybody is in the
same situation when asking around, all processors will block. This can happen if the coordinator fails
after receiving all YES votes but before sending any COMMIT message

Why can't every participant then just ask everybody else? If one says no, abort, else say yes. Because
the failed coordinator might want to abort.

There's also the possibility that the coordinator and a participant fail. In that case, it is impossible to
say whether this participant has recieved the COMMIT and committed or whether we should abort
because no COMMIT message was sent, so we have to wait.

Persistence through logging to node disk.

YES logs before sending, NO logs before or after. Because if it crashes in between and finds neither a
YES nor a NO log record, it aborts unilaterally.

Same for the coordinator with COMMIT or ABORT.

Reason is probably that data to evaluate is then no longer in memory and cannot be reevaluated if
not yet decided.

https://courses.cs.washington.edu/courses/csep552/13sp/lectures/4/2pc.pdf

Linear 2PC

Less messages by moving on in a daisychain. Total number of messages is not 3n but only 2n
because a NO propagates in both directions and a COMMIT through the whole line. The coordinator
seems to be the end of the chain.

3PC

Doesn't block => liveness

AC1: every node decides the same

AC2: no node changes its decision

AC3: no imposed COMMIT

AC4: nontriviality: if there are no failures and everybody voted YES, then the decision will be
COMMIT

ACS: If all failures are repaired and there aren't any more for sufficiently long, then the protocol will
terminate with a decision (liveness)

Assuming no communication failures.
NB rule: Nobody can decide to commit as long as anybody is uncertain.

Distributed Systems Seite 8

https://courses.cs.washington.edu/courses/csep552/13sp/lectures/4/2pc.pdf

Difference to 2PC: PRE-COMMIT -> ACK -> COMMIT

So if the coordinator fails after VOTE-REQ and all processors vote YES, then they would all be in
uncertainity in 2PC. In 3PC it is guaranteed that nobody has decided to commit while anybody is
uncertain. So if everybody is uncertain, they can find that out and safely abort. To make sure,
nobody is uncertain before deciding, the coordinator needs the PRE-COMMIT. Now if the
coordinator crashes after sending PRE-COMMIT, participants know what is going to happen but have
to ask around to make sure everybody is certain before committing.

If coordinator times out waiting for votes, ABORT. If coordinator times out waiting for ACKs, ignore
those and send the others a commit. (some also say to wait. The appended solutions say
otherwise) They can later ask around to find out that they should commit.

If a node fails after recieving PRE-COMMIT, it has to ask around to make sure nobody is uncertain.

Again, logging YES before sending because if crashes and no YES there, then abort. It seems like
sending precommits is not logged, so if the coordinator crashes after starting 3PC but has no

decision in its log, it has to ask around (maybe somebody already got a precommit)

Not used in practise because probability of blocking is small enough and 3PC is too expensive.

The following sequence of events shows an execution of the 3PC protocol where no failures occur:

time step | event

1 (C, Py, request)

2 (C, Pa, request)

3 (P1.C. yes)

1 (P2, C, yes)

5 (C, Py, pre-commit)
6 (C, P», pre-commit)
7 (P, C, ack)

8 (P2, C, ack)

9 (C, P1, commit)

10 (C, Ps. commit)

We now modify this sequence of events starting from some time step. Complete each new sequence
with one possible next event such that it models a valid execution of the 3PC protocol.

Sequence (i): Sequence (iv):
time step | event time step | event
1 (Ps.C. no) 6 (C, fail)
5 (C, Py, abort) 7 (P;, ask around ~~ commit

Sequence: (v):
Sequence (ii): equence (v)

time step | event

time step | event

1 (Pa, fail)
2 (C, fail)
3 (P, C, yes) 5 (C, Py, abort)
1 (P,, ask around ~ abort)

Sequence (vi):

time step | event
Sequence (iii): / I

6 (Ps, fail)
time step | event 7 (C, Pa, pre-commit)
5 (C, fail) = (P, C, ack)
6 (Py, ask around ~ abort) 9 (C, Py, commit)

Distributed Systems Seite 9

PBFT

Dienstag, 9. Januar 2018 10:30

Practical Byzantine Fault Tolerance
n=3f+1

e Messages are signed

e One node is considered primary (might change over time)

e Messages might not have their order preserved
If Backup Nodes detect faulty primary node, they start a new view v where the next Node is now the
Primary. (primary = v mod n)
The primary picks consecutive sequence numbers. Backup nodes verify through intercommunication
that they all have received the same order.

No correct node will execute a request with the sequence number belonging to a different request.
Nodes will collect confirmation messages for a decision that a request should be executed by asking
2f + 1 nodes, including itself.

If we have two sets of 2f + 1 nodes, then there exists a correct node in their intersection.
2f+1 because that's the majority of the correct nodes (n = 3f+1)

Agreeing on a unique order of requests within a view

1. primary sends pre-prepare message to all backups with a specified sequence number.

2. Backups send prepare messages to all nodes to state that they agree.
3. All nodes send commit messages to all nodes, execute the request and inform the client.

Algorithm 4.12 PBFT Agreemerlt Protocol: Phase 1

Code for primary p in view v:
1: accept request(r), that originated from client ¢
2: pick next sequence number s
3: send pre-prepare(w, s, 1, p), to all backups
Code for backup b:

4: accept request(r), from client ¢
5: relay request(r), to primary p

Definition 4.13 (Faulty-Timer). When backup b accepts request r in Algo-
rithm 4.12 Line 4, b starts a local faulty-timer (if the timer is not already
running) that will only stop once b executes r.

Remarks:

e If the faulty-timer expires, the backup considers the primary faulty
and triggers a view change. We explain the view change protocol in
Section 4.4.

Algorithm 4.15 PBFT Agreement Protocol: Phase 2

Code for backup b in view v:

1: accept pre-prepare(v,s,r,p),
2: if p is primary of view v and b has not yet accepted a pre-prepare-message
for (v, s) and different r then
: send prepare(w, s, r, b);, to all nodes
4: end if

Distributed Systems Seite 10

Algorithm 4.17 PBFT Agreement Protocol: Phase 3

Code for node i that has pre-prepared v for (v, s):

1: wait until 2f prepare-messages maltching (v, s,7) have been accepted (in-
cluding i’s own message, if it is a backup)

2: send commit(w, s,1); to all nodes

3: wait until 2f + 1 commit-messages (including i’s own) matching (v, s) have
been accepted

4: execute request r once all requests with lower sequence nmumbers have been

executed

send reply(r); to client

o

¢ The client only needs one correct reply, so it waits for f + 1 reply messages.

e Once a single correct node executed the request, all correct nodes will eventually, with the
same sequence number.

¢ [f a client resends a request, nodes can look at the timestamp to figure out if they have already
executed it.

¢ A correct backup does not send prepare for the same (view, sequencenumber) more than
once. (Neither does a primary with a pre-prepare)

e The idea behind the view change protocol is this: during the view

change protocol, the new primary gathers prepared-certificates from

2f + 1 nodes, so for every request that some correct node executed,

the new primary will have at least one prepared-certificate.

o After gathering that information, the primary distributes it and tells
all backups which requests need to be to executed with which sequence
numbers.

e Backups can check whether the new primary makes the decisions re-
quired by the protocol, and if it does not, then the new primary must
be byzantine and the backups can directly move to the next view
change.

Algorithm 4.22 PBFT View Change Protocol: View Change Phase

Code for backup b in view v whose faulty-timer has expired:

1: stop accepting pre-prepare/prepare/commit-messages for v

2: let P; be the set of all prepared-certificates that b has collected since the
system was started

3: send view-change(v + 1, P;,); to all nodes

Distributed Systems Seite 11

Algorithm 4.23 PBFT View Change Protocol: New View Phase - Primary

o

Code for primary p of view v+ 1:

. accept 2f + 1 view-change-messages (including possibly p’s own) in a set

V' (this is the new-view-certificate)

: let @ be a set of pre-prepare(v + 1,s,7,p), for all pairs (s,7) where at

least one prepared-certificate for (s,r) exists in ¥

. let sY_ . be the highest sequence nmumber for which @ contains a

pre-prepare-Imessage

add to O a message pre-prepare(v + 1,s',null,p), for every sequence
number s" < ¥ for which @ does not yet contain a pre-prepare-message
send new-view(v + 1,V, O, p), to all nodes

start processing requests for view v+ 1 according to Algorithm 4.12 starting
from sequence number s¥ +1

Algorithm 4.24 PBFT View Change Protocol: New View Phase - Backup

Code for backup b of view v + 1 if b’s local view isv" < v+ 1:

1: accept new-view(v + 1,V, 0, p),

. stop accepting pre-prepare-/prepare-/commit-messages for v// in case

b has not run Algorithm 4.22 for v+ 1 yet

3 set local view to v 1

4: if p is primary of v + 1 then

5 if @ was correctly constructed from V according to Algorithm 4.23 Lines 2
and 4 then

fi: respond Lo all pre-prepare-messages in (? as in normal case operation,

starting from Algorithm 4.15

T starl accepling messages for view v + 1

& else

o trigger view change to v + 2 using Algorithm 4.22

10: end if

11: end if

e A faully new primary could delay the system indefinitely by never

sending a new-view-message. To prevent this, as soon as a node sends
its view-change-message for v+ 1, it starts its faulty-timer and stops
it once it accepts a new-view-message for v+ 1. If the timer runs out
before being stopped, the node triggers another view change.,

Since at most [consecutive primaries can be faulty, the system makes
progress after at most [+ 1 view changes.

We described a simplified version of PBFT; any practically relevant
variant. makes adjustments to what we presented. The references
found in the chapter notes can be consulted for details that we did
not. include.

Distributed Systems Seite 12

Paxos

Dienstag, 9. Januar 2018 13:51

Ticket
Expires if the server issues a new one.

Algorithm 1.12 Naive Ticket Protocol

Phase 1

1: Client asks all servers for a ticket
Phase 2

2: if a majority of the servers replied then

3. Client sends command together with ticket to each server

4: Server stores command only if ticket is still valid, and replies to client

5 else

6: Client waits, and then starts with Phase 1 again

7: end if
Phase 3

& if client hears a positive answer from a majority of the servers then

9: Client tells servers to execute the stored command

10: else
11: Client waits, and then starts with Phase 1 again
12: end if

e There are problems with this algorithm: Let uy be the first client
that successfully stores its command ¢; on a majority of the servers.
Assume that wy becomes very slow just before it can notify the servers
(Line 9), and a client up updates the stored command in some servers
to ea. Afterwards, uy tells the servers to execute the command. Now
some servers will execute ¢ and others ¢!

e ldea: What il a sorver, instead of only handing out tickets in Phase
[, also notifies clients about its currently stored command? Then, us
learns that wy already stored e and instead of trying to store eg, us
could support w; by also storing . As both clients try to store and
execute the same command, the order in which they proceed is no
longer a problem.

s DBut what if not all servers have the same command stored, and us
learns multiple stored commands in Phase 1. What command should
g support?

o Observe that it is always safe to support the most recently stored
command. As long as there is no majority, clients can support any
command. However, once there is a majority, clients need to support
this value,

® 50, in order to determine which command was stored most recently,
servers can remember the ticket nomber that was used to store the
command, and afterwards tell this number to clients in Phase 1.

e If every server uses its own ticket mumbers, the newest ticket does not

necessarily have the largest number. This problem can be solved if
clients suggest the ticket numbers themselves!

Distributed Systems Seite 13

Algorithm 1.13 Paxos

Client (Proposer) Server (Acceptor)
Inalializalion ... 0o e
(& 4 command to crecule Toax = 0 4 largest issued tickel

L =10 < lickel number Lo try
=L < slored command
Taore = 0 4 ticket used to store O

2
T

b=t 1

Ask all servers for ticket {
3. if t = Tux then
4 1 |""“ =1
5: Answer with ok(Thore, C)

6: end if
8 e
7. if a majority answers ok then
8 Pick (Tuore, €) with largest Tiore
9 if Tiyore = 0 then
10: o=
11: end if
12: Send propese(t, ¢) to same
majority
13: end if
14: if t — Tux then
1 C=e
16: , ;llf{iltﬂ =1
17: Answer success
18: end if
L
19: if a majorily answers success
then
20: Send execute(c) to every server
21: end if

Distributed Systems Seite 14

Note that Paxos cannot make progress if half (or more) of the servers
crash, as clients cannot achieve a majority anymore.

The original description of Paxos uses three roles: Proposers, accep-
tors and learners. Learners have a trivial role: They do nothing, they
just learn from other nodes which command was chosen.

We assigned every node only one role. In some scenarios, it might
be useful to allow a node to have multiple roles. For example in a
peer-to-peer scenario nodes need to act as both client and server.

Clients (Proposers) must be trusted to follow the protocol strictly.
However, this is in many scenarios not a reasonable assumption. In
such scenarios, the role of the proposer can be executed by a set of
servers, and clients need to contact proposers, to propose values in
their name.

So far, we only discussed how a set of nodes can reach decision for a
single command with the help of Paxos. We call such a single decision
an instance of Paxos,

For state replication as in Definition 1.8, we need to be able to exe-
cute multiple commands, we can extend each instance with an instance
number, that is sent around with every message. Once the 1% com-
mand is chosen, any client can decide to start a new instance and
. nd T H 5 al
compete for the 2™ command. If a server did not realize that the 1
instance already came to a decision, the server can ask other servers
about the decisions to catch up.

Distributed Systems Seite 15

King Algorithm

Dienstag, 9. Januar 2018 15:26

Algorithm 3.14 King Algorithm (for f < n/3)
1: & = my input value
2: for phase =1 to f+ 1 do

Round 1

3 Broadcast value(r)

Round 2

-

if some value(y) received at least n — f times then
Broadcast propose(y)

end if

if some propose(z) received more than f times then
T =z

end if

Round 3

oo

=

10: Let node v; be the predefined king of this phase i
11: The king v; broadcasts its current value w

12: if received strictly less than n — f propose(z) then
13: r=uw

14: end if

15: end for

Lemma 3.15. Algorithm 3.14 fulfills the all-same validily.

n — f because in line 5 there could be multiple proposals later if the byzantines send different
values to different nodes. e.g. when half of the correct nodes value 0 and half value 1, then the
byzantines could choose what value a node proposes, because that node would then receive n/2

We need f+1 phases so that at least one king is correct, otherwise the byzantine nodes could send
every correct node a different value as king and they would never agree.

3.1 Validity

Definition 3.3 (Any-Input Validity). The decision value must be the input
value of any node.

Remarks:
e This is the validity definition we used for consensus, in Definition 2.1.

e Does this definition still make sense in the presence of byzantine
nodes? What if byzantine nodes lie about their inputs?

e We would wish for a validity definition which differentiates between
byzantine and correct inputs.

Definition 3.4 (Correct-Input Validity). The decision value must be the inpul
value of a correct node.
Remarks:

¢ Unfortunately, implementing correct-input validity does not seem to
be easy, as a byzantine node following the protocol but lying about
its input value is indistinguishable from a correct node. Here is an
alternative.

Definition 3.5 (All-Same Validity). If all correct nodes start with the same

Distributed Systems Seite 16

its input value is indistinguishable from a correct node. Here is an
alternative.

Definition 3.5 (All-Same Validity). If all correct nodes start with the same
input v, the decision value must be v.

Remarks:

e [f the decision values are binary, then correct-input validity is induced
by all-same validity.

e If the input values are not binary, but for example from sensors that
deliever values in B, all-same validity is in most scenarios not really
useful.

Definition 3.6 (Median Validity). If the input values are orderable, e.g. v € R,
byzantine outliers can be prevented by agreeing on a value close to the median of
the correct input values — how close depends on the number of byzantine nodes

f.

Distributed Systems Seite 17

Hashing

Mittwoch, 10. Januar 2018 08:05

Consistent Hashing
1. Choose a set of hash functions
2. Hash the filename
3. Hash the current nodes name

4. Store a copy of the file in the node where (1) and (2) differ the least for any hash function used

. hashMaps-Values
Number of stored values expected is ——n—p———-

Split Ordered Lists
Not relevant for this exam but This paper explains it. | stumbled about this question which | already

had upvoted before 2017 apparently.

Distributed Systems Seite 18

http://www.cs.ucf.edu/~dcm/Teaching/COT4810-Spring2011/Literature/SplitOrderedLists.pdf
https://stackoverflow.com/questions/25299572/why-does-the-split-ordered-hash-table-use-reversed-key

Locks

Mittwoch, 10. Januar 2018 09:18

Array Lock / Anderson Lock

Every thread has an array element that is set to false unless they have the permission to acquire the
lock.

Think of the array as a ring, because we calculate indices modulo its size.

There is a shared Atomiclnteger pointing to the tail. A new thread increases this integer and starts
spinning on the (previous) tail flag. once it becomes true, the thread enters the critical section.
When it leaves the critical section, it sets the flag in the tail to true.

If no thread is spinning on it, the next thread will read true as soon as it enters, otherwise the
spinning starts again.

The ring needs to provide a flag for every of the n processes. If there are L locks, that takes Memory
of O(Ln).

Each thread only spins on one memory location so there is not much invalidation traffic.

CLH Queue Lock

Every thread creates a Qnode which has a successor and a boolean field wantLock.

When a thread queues up, it uses an atomic GAS to set itself as the new tail and then starts spinning
on its predecessors wantLock. Once it is false, the thread enters the critical section. ... Now it
wants to leave again. It sets its own wantLock to false. Its Qnode might now be the tail or
spun on, so we leave it existent. But our predecessor does not need their Qnode anymore,
so we take that Qnode and reuse it next time we want to lock. That way, we only need n
memory allocated. (Bad on NUMA though).

That means that if we assume a thread to only hold one lock at a time and we have L locks,
we only need to store n Qnodes (for every thread one) and additional L Qnodes as tails of
empty queues. = Memory € O(L + n)

MCS Queue Lock

Just like CLH, but every thread owns its own flag, so it's better on NUMA nodes.

When a thread queues up, it sets itself as the new tail and spins on its own hasLock. Once it is true,
the thread enters the critical section.

To leave, if it has a successor, it sets the hasLock of the successor to true. Our successor does not
depend on us, so we can reuse our node to join the same or a different queue lock again.

If the next field is null, it uses compareAndSet to set the tail to null if the tail is currently this thread.
if that worked, yey. If it didn't, some other thread has already set itself to tail but not yet set itself to
next, so we have to spin on our next flag.

Because every thread can reuse its Qnode and we assume that every thread only holds one lock, we
have Memory usage of O(n + L) (because we still need the tail pointers)

Distributed Systems Seite 19

Braess paradoxon

Mittwoch, 10. Januar 2018 13:46

TIRIRILELESS LUy Lt LIDDS UUMERAD .

Lemma 8.14. Adding a super fast road (delay is 0) between u and v can in-
crease the travel bime from s to L

Proof. Since the drivers act rationally, they want to minimize the travel time.
In the Mash Equilibrium, 500 drivers first drive 1o node w and then to @ and 500
drivers first 1o node v and then to £, The travel time for each driver is 1 + 500
J 1000 = 1.5.

04 CHAPTER 8. GAME THEORY

d /1000 o /1000

o /1000 o 1000
[a) The road network without the shortent (b) The road network with the shorteut

Figure 8.13: Braess' Paradox, where o denotes the oumber of drivers using an
edpge,

To reduce congestion, a super fast road (delay is 0) is built between nodes u
and v, This results in the following Nash Equilibrivm: every driver now drives
from s to v to u to £, The total cost is now 2 = L5 a

Distributed Systems Seite 20

FLOMO

Mittwoch, 10. Januar 2018 14:03

€ FloMo_DistributedSystemsPart1

Distributed Systems Seite 21

Distributed Systems
34200 characters in 4903 words on 939 lines

Florian Moser

January 9, 2018

1 motivation and history

1.1 distributed systems

definitions
multiple autonomouns processors that do not share primary memaory
cooperate by sending messages over a communication network

physically distributed
computer cluster, network

logically distributed
processes, distributed state, no common time

abstractions of distributed systems

network with nodes (routing, addressing)

objects provided by O8, middleware, languages (client /server API)
algorithm and protocols (actions, events, consistency, correctness)

why distributed systems

there are indeed physically distributed systems
electronic commerce

communication

globalization

distributed systems connect

systems (use resources jointly)

funetions (cooperation in using specialized resources)
capacity (combining of resources)

data (globally accessible data)

survival (redundancy)

concepts

CONCUIrency, Hyll(lhl'(JIIiZﬂ.t,il}Il

programiming languages as communication objects
parallel / distributed algorithms

semantic of cooperation and communication
abstraction principles

basic phenomena of distribution

historical

computer-computer communication (data transfer, master-slave)
ARPNET (peer to peer)

workstations (LAN)

commercial ploneer projects (banks, flight reservation systems, WAN)
web/internet (eCommerce, web services)

mobile devices (smartphone, WLAN)

internet of things (door, refrigerator)

concepts

2 ARCHITECTURES

2.1 architectures of distributed systems

monolithic
mainframes, terminals could give commands

peer-to-peer
ARPNET, each node is provider and consumer at the same time

client-server
server as provider
client as consumer

fat- or thin client
depending on where you do presentation/application/data logic
some presentation must be at client, some data must be at server

3-tier
processing is distributed to multiple entities divided logically
easier maintenance, easier replacements, optimized hardware

Distributed Systems Seite 22

multi-tier

more layers help with scaling and flexibility
better computation distribution

distributed databases help with replication
only possible because hardware is so cheap

compute cluster
concentrated into small space (few meters) with fast interconnectivity
different net topologies for different use cases

service oriented architecture (SOA)

splitting the application into different business processes
gives more flexibility

loose coupling between services with events and messages
webservices combined with different providers

cloud computing

concentrate computational power at a central place, outsource applications

no maintenance, everywhere available, no data backups

cheap becanse of scaling effects

can adapt to changes in business requirements

in the future, cloud unit container parked close to power plants

parallel vs distributed system

coupling is the distinetive factor

parallel systems are multicores (same chip) with shared memory
distributed systems are compute cluster and compute networks

2.2 net topologies

hypercube
die of dimension d

easy routing (XOR with receiver, simply flip bit at each node), short paths

but needs a lot of connections (n log n)

d-dimensional torus

construct by taking w elements of dimension d-1 and connect
corresponding elements to ring

wrap-around grid

3 characteristics and phenomenas

3.1 problems

heterogeneous software and hardware

separation leads to new problems

partial failures possible (instead of total failure)
missing global state & exact clock
inconsistencies

security aspects

more important than in single-user systems
maore ditfieult to implement

integrity, availability, privacy, anthentication, ...

3.2 solutions

good tools & concepts
abstraction to manage complexity

3.3 conceptional problems

snapshot problem
need global view despite continuous ongoing changes

phantom-deadlocks

int =1, B waits C; observing B determines that B waits C
int =2, A waits B; observing A determines A waits B

int =3, C waits A; observing C determines C waits A

looks like a deadlock but observations done at different times
need to detect such problems

clock synchronization
how to evaluate clock offset / different running speed?
need to synchronize clocks at different devices

causal observations

hole makes pressure decrease therefore pump increases power

but observer sees increase before pressure drop because of reordering
observer assumes the pump made a mistake

need to observe an event before its symptoms

secret establishment over insecure channels
idea that it may works give the lock example

a sends secret with own lock to b

b adds its lock and sends it back

a removes lock and sends it to b

b can now remove its own lock

need way to make this possible in software

4 communication

4.1 cooperation by exchanging messages

to cooperate processes they need to exchange information
use shared memory or send messages
messages need processing power and management

required

physical medium in between
clear defined behaviours
common language and semantic

implicit communication
receiver can infer from actions of sender how far it progressed

message passing system

also called message passing system

organizes transport, and manages resources

provides API's

implements higher communication protocols

guarantees certain properties (priorities, in-order receive)
masks mistakes (timeouts, AKS, sequencing, repeat, ...)
hides heterogeneity of different systems (eases portability)

4.2 properties

in-order receive (FIFO)

send order = receive order

but allows for messages to be indirectly surpassed
A sends to B, A send to C, B sends to C

C receives from B, C receives from A

in-order receive (causal ordering)

send order = receive order

but no message is allowed to indirectly surpass another!
generalizes FIFO to all processes

priority

semantics unclear!

how to process high priority messages?

how to ensure fairness and neutrality?

why not just ignore priority of messages?

possible applications are pause/abort of actions, break of deadlocks, ...

failure modes

classification of failures

message failures as lost message

crash /fail-stop of process

time failure where event happens to too late or too early
byzantine / rogue processes with invalid messages / behaviours
some can only be observed using redundancy

4.3 communication types

message oriented

unidirectional

fire & forget

sending process can continue working directly after sending message

task oriented
bidirectional

Distributed Systems Seite 23

result of request will be passed back to sender
client waits till response received

blocking send

sender waits till transaction is finished

sender has guarantee that message has been received

receiver can send ACK as soon as message is received, or after processing

4.4 synchronous communication

idealized view is that send & receive happen at the same time
can be implemented with blocking send

receiver first
receiver blocked till message is inbound

sender first
sender frozen till receiver ready, processed message and responded with

ACK

virtual simultaneity

create diagram with lines containing senders as dot

add messages as arrows from sender dot to receiver dot

move around dots without changing order till all arrows are vertical
virtual simultaneity fulfilled if no arrows cross at end of transformation

deadlocks
if eyclic dependency in wait-for-graph
A waits for B, B waits for A

4.5 async communication

no-wait send
sender is only blocked till message is on its way
very fast if not bufler full or other sending issues

advantages compared to sync

sending process can continue while message is send over networks
less coupling between sender and receiver (can be unresponsive)
higher degree of parallelism

less danger of communication deadlocks

disadvantages compared to sync
sender does not know when/if message has been received

debugging is difficult

4.6 communication in practice

a lot of high level access to send very specific messages
very efficient but difficult to get right, due to bad defined semantics

blocking
waits till message was sent from communication system (of sender)

non-blocking

informs communication system of available message

but does not wait for sending

returns handler which can be queried if message has been sent

synchronous
send operation returns after message was delivered to receiver
ulate async using buffer

carn =

asynchronous
no guarantee that message has been delivered successfully
can simulate syne by waiting for explicit acknowledgement

4.6.1 buffer

sits between sender & receiver, has own process

if new message received from sender
can wait for another message
can wait in blocking send for receiver

implementation with proactive receiver
receiver asks puffer for new message whenever ready
receives no response if puffer empty

if puffer [ull it stops accepting messages [rom sender

implementation as multi-thread object
with buffer ring, FIFO

puffer is in shared address space of sender and receiver

4.7 communication mechanisms

table
asynchronous (x1), synchronous (x2)
message (v1), task (y2)

most commonly used
asynchronous messages
synchronous tasks

RPC (x2, y2)
executes task on other machine, waits for confirmation
RPC (remove procedure call)

asynchronous RPC (x1, y2)

also called Remove Service Invocation
parallelisation of sever/client possible

to implement use await, callbacks, future-variables
C4# Task, only waits if not finished computation

4.7.1 no-wait send (x1, y1)

implementations
with puffer; as seen above

pro
server/client are properly separated
simple implementation

contra

sender does not know if message has been received

needs to use puffers, which causes overhead (copying, space management)
needs flow control mechanisms

4.7.2 rendezvous (x2, y2)

three implementations

sender repeatedly contacts receiver till no more NACK received
sender sends message which is put in puffer at receiver

receiver sends ACK to sender as soon as he is ready

pro
small buffers only

contra
busy waiting
complex protocol

4.8 RPC

like a procedure call

clear semantics for executor

simple to program in high-level API's (like any other method call)
abstract complexity due to distributed factors as good as possible

example call

client calls procedure, stubs marshal, transport sends request

server receives request, stubs unpacking arguments, local procedure call
server produces result, stubs marshal, transport sends reply

client receives reply, stubs unpack result, result is returned

stubs

take care of packing/unpacking (converting representations)
set timeouts, raise exceptions, pass messages

simulate "local” procedure call

can be generated

capability of data structures
how to convert representations?
numbers (big endian / little endian)
characters (UTF8 / ASCII)

types like strings (length / °/07)

arrays (row / column wise)

marshalling

creating of message from parameters

flattening complex objects

use representations the other party understands

conversion
converting of objects in common notations, for example as XML
or "receiver makes it right” (send whatever, receiver has to correct)

transparency
RPC should behave as local procedure calls
not always possible (server /network failure, difference in live cycles)

performance transparency

Distributed Systems Seite 24

RPC's slower than real local procedure call
communication size can be quite big
sudden delays possible

performance analysis

transport cheap

conversion (as headers, checksums) is expensive
copying is expensive

context-switch is relevant when using small messages

place transparency

target must be named explicitly
no global variables

no pointersreferences

callback RPC
temporary role reversal
client receives status updates from server

context handles

structure which contains context information

enables server to remember client

is passed to client in reply, is included in the next request

broadcast /multicast

request is sent to other servers at the same time

broadeast sends to all, multicast only to some)

RPC is finished after first response (or client can wait for more results)

security

authentication when creating connection (" binding”)
authentication of each single request

end-to-end encryption of messages

make it impossible to modify (digital signature, checksums, MAC)

"secure RPC"” as example

session key k encrypts messages

request contains encrypted timestamp

first request contains time window

server accepts request if timestamp bigger than last, if inside time window
server reply contains the last timestamp for client-side anthentication
encrypted timestamp ensure attacker can’t generate message

small time window ensures attacker can’t bruteforce the keyv

4.8.1 failure transparency

message can be lost (or too slow; can't be differentiated)
multiple failure causes, but mostly all-or-nothing behaviour
partial system fault {(client or server) typical

different view of transaction state between server & client

missing request message

resend request after timeout

but how to choose timeout, how many retries, maybe server just too slow
possible repeating requests due to resend two requests

missing reply message

same treatment as missing request, client can’t know difference
server can cache replies, resend if same request received again
but how to clean up cache (time & reply ACK's)

server crash
client can’t differentiate crash before, after, in procedure
maybhe inconsistent server state after reboot

client erash / not longer interested

server waits indefinitely for ACK of client

blocks resources due to orphans at server

use “is-alive” ping while running procedures, discard old processes
let client explicitly contact server for cleanup

4.8.2 failure semantics

maybe-semantic

no repetition of request
easy and efficient

useful for lookup services

at-least-once semantics

automatically repeat requests

stateless protocol on server side (no duplicates can be discovered)
nice for idempotent operations (reading a file)

maybe uses more resources than explicitly necessary

at-most-once semantic

can discover duplicates, then just resends persisted re
nice for non-idempotent stull

more expensive than at-least-once

exactly-once
not really possible
because if crashes oceur no computations take place

4.9 more concepts

ports
communication end point which abstracts structure of receiver
one process can have multiple ports

channels

for example using ports

can also name them and send; read from them

broadcast with subscribers

very flexible because can change the connection structure any time

software bus
ANONY oS

can react to events
can send events

event channels

anonymaons

can register for events

dispatches events

participants need to be always listening (maybe use buffers)

zeitiiberwachter nachrichtenempfang
receiver sets max time he wants to wait, else other code is executed
also useful for blocking send

5 client-server

5.1 general

server provides infos
client consumes infos and provides front end for user

5.2 server

iterative server

will process one request at a time

take new request from puffer if finished with old
easy to realize, good for trivial stuff

concurrent server
concurrent processing of multiple requests

concurrent server with dynamic handlers

master creates slave "handler” for each request

may has lixed mumber of slaves ready for usage " process preallocation”
slave communicates directly with receiver

ceiling amount of slaves at the same time

stateless servers
every request must be fully described
HTTP theoretically stateless

state servers
can identify repeated requests, therefore idempotent
in HTTP server needs to identify customers

5.3 client

possibility for asyne RPC to communicate with server

5.4 tasks

non-pure
like writing a file

pure ("zustandsinvariant™)
simple lookups

idempotent tasks

repeated tasks lead to same result (but can be non-pure)

5.5 web stuff
identify customers

URL rewriting, dynamic webpages
cookie can be the context-handle

Distributed Systems Seite 25

identify with IP (but not uniguely)

SOA vs ROA
service vs resource oriented architecture (SOAP vs REST)

5.5.1 lookup service

connects client & server
server makes itsell known in LUS (lookup service)
client asks LUS and import the provided service configuration

pro
register multiple provides for same task for scalability
validate authorization

can use polling to see if server is still responsive

can manage multiple versions

contra

lookup needs time

LUS is single point of failure
clients need to know LUS!

5.6 middleware

RPC libraries

client-sever paradigm

easy interface, code generation

security such as authorization, authentication, encryption

client-sever distribution platforms

lookup service, global namespace, global filesystem
supported multi threading

object-based distribution platforms

cooperation between distributed objects
ohject-oriented interface

object request broker (ORB) functions as middleware

5.6.1 CORBA

ORB to redirect method calls
IDL interface description language with stub generation

CORBA update failed in 2000, different interests and better competition

possible methods calls

synchronous (waits for response)

delayed synchronous (can get object later)
one way (fire & forget)

5.7 web services example SOAP

example for client-server model
internet is very homogeneous
weh services define platform independent interface

keywords
HTTP (Hyper Text Transport Protocol) as transport layer

UDDI (Universal Description, Discovery and Integration) as lookup service

SOAP (Simple Object Access Protocol) specifies protocol
WSDL (Web Services Description Language) as service description

UuUDI

currently not available cause money

SOAP envelope

each SOAP request is sent in an envelope
body containing the data serialized as XML
header which may specifies additional options

SOAP engine

server stubs are generated [rom a webservice implementation (buttom up)

client stubs from WSDL description (top down)

5.7.1 WSDL xml nodes

definitions
targetNamespace contains current element
xmlns; NS to add more namespaces

types
import other schemas, add own elements, add complexTypes

messages
can name messages, specifying the needed parameters

portType
describes a method
has operation sub nodes which describe input, messages and faults

binding
what protocol to use HT'TP, SMTP, UDP
multiple bindings possible

service
where to access services
maps a binding to a conerete address (URL)

5.8 REST

ROA architecture
uses URI (Unique Resource Identifier)
created for the web, as best way to use it

REpresentational State Transfer
not resource, but representations are transmitted
get access to state of resource, can alter & send them back

usage model

hypermedia as engine of application state

client knows only base uri

server broadeast other uris per form or hyperlinks

5.8.1 principles

client-server

consists of components who can connect to clients, to server or hoth
User Agend which creates requests

Intermediary which redirects request potentially modifying them
Origin Server which has control of resources

statelessness
request contains all info for processing: context held client-side
crash/orphans less critical, easier scaling and monitoring, caching

caching
meta-data determines how long response is valid
clients /servers consult cache for answers without further processing

uniform interface

addressing done with URI

requests are standardized (GET, POST, ...)

standard representations (XML, JSON, ...}

resources can provide multiple formats, client chooses applicable

layered system
clients don't know about server
intermediaries can be added at any point

code on demand
server can externalize logic to the client
5.8.2 properties

scalability
statelessness allows efficient servers [/ load balancing
caching reduces communications

adaptability

uniform interfaces decouple server & client
layering allows manipulation later

code on demand allows to update active clients

observability

requests which contain all infos are easily traceable
reliability

thorough uniform interfaces & layering allows for redundancy

5.8.3 state persisting

resource state
static templates & resources from server

client state

active rendered state & its history

bookmarks preserve full URI

back button of browser allows to go back to the prior state

statelessness means
client & server state are strictly decoupled {(hence sessions)

bad practices

url rewriting; encode client-specific information in requests

cookies; server has state of client possibly changing request interpretation
back button; server/client state disjoint, previous URI may stops working

Distributed Systems Seite 26

6 Broadcast / Multicast

6.1 group communication

idealized
memory based communication where all receive immediately
message based communication where all receive at same time

pull
client requests infos from server
event driven

push

server sends infos to
demand driven
client subseribes to channel, server publishes news

ient

6.1.1 broadcast

target

send message to all members

real

network often not multicast, can simulate by sending a lot of single
messages

non-determi - time shift, no sending guarantees

multicast protocol needs to approximate

lost messages

due to network overload, receiver not listening

receivers are not in the same state anymore

need redundancy and complicated protocols to solve this

best effort broadcast

typically simple send without ACK

used to distribute non-critical information

used to implement higher protocols

very efficient if successful

no guarantees if and how many messages are delivered

reliable broadcast (wait for ACK)

waits for ACk for every single message

resends if none received

bad scaling becanse of polluting ACKs, need to distinguish duplicates

reliable broadcast (with NACK)

broadeasts contain identifier /sequence set by sender

receiver broadeasts missing messages with NACK, sender resends
sender can send empty messages to ensure receiver missed no messages
does not help if server / network crashes

reliable broadcast (flooding)

send message to all nodes except the originator

remember the sequence number of the message to avoid flooding twice
need only one connection to a not crashed server to receive the message

broadcast message ordering

can order messages differently

stricter semantics, principle is as cheap as possible, as perfect as needed
difficult to implement, less parallelization, less performance

FIFO
all broadcast messages from same sender are received in same order
but causality is not guaranteed

causal order
causality exists if there is a connection in space-time diagram from A to B
implies all messages are received according to the rules of causality

atomic
if two process receive the same two messages, they are in the same order
does not imply FIFO & causal order

order atomic with central sequencing

unicast from sender to sequencer

broadeast from sequencer to other members
sequencer waits for ACK before sending next message

order atomic with token

single token created which contains sequence number

member with token can send message

token is passed around in predefined order

messages delivered according to sequencing number

new token generated if owner timeouts

use explicit token request instead of passing if a lot of members

causal 4+ atomic
comparable with memory based communication

also called virtual synchronous communication

events happen at the same logical time (which may not equals real time)
logical time only takes causality of messages into account

same as synchronous inside the system

6.1.2 multicast

target
send message to subgroup of members

why

simplify addressing

hiding of group assignment

logical unicast, groups have replaced individuals

hidden channels
messages which leave groups and return through another node
if those count as casually depended must be defined

dynamic groups

members can join/leave group at any time

what happens if this occurs while multicast operation in progress?
entry /exit should be atomic

senders should see the real members of the group at the time of sending

6.1.3 tuple rooms

target
decouple sender and receiver

what
virtual, global storage
data can be added, changed, removed from all members

linda

language for tuple rooms

out(t) (adds), in(t) (reads & removes), read(t) (reads)

tuple room implemented as associative storage

get tuple by condition: ("hi”, ?p) is tuple with "hi" as first attribute
asynchronous operations (readp and inp(t) do not block, return bool)
synchronous operations (read and in(t) wait for correct tuple to appear)

able to model server-client

client places requests and waits for responses

server processes requests and places responses

client; out("req”, gnid, params); in("resp”, guid, Tresult);
server; in("req”, 7guid, 7params); out("resp”, guid, result);
some tuple rooms support additionally

persistence (tuple will not perish after termination)
transaction (important if multiple servers access tuple room)

problems

central tuple room is weakest link

replicated / disjunct distributed tuple rooms
difficult for structured programming and verification

JavaSpaces

tuple room for java

can persist objects and behaviour

part of Jini (middleware for java)

can transport code to receiver, use common objects
ordering of operations between different processes undefined

6.2 logical time

time is useful

state of system at specific point in time

causality between events (if x was before y, ¥ cannot have caused x)
fair mutual exclusion (longest waiting is served)

other applications as timestamps

real time
asymmetric, transitivity, irreflexivity, linearity, infinite, continuous (always
point in between), metric, every point is eventually reached

causal relation (x<{y) exactly when

.y from same process and x before y

% is a send, and v its corresponding receive

there is a 2 for x<<z and z<y

solve this with timestamps, called C(x)

if e <e’ then Cle) <C(e’) (time must imply causality)

logical clocks by lamport

at each event the clock of each process is increased

at send, send own clock inside request

at receive, take max(own, foreign clock) then increase it

Distributed Systems Seite 27

6

to get injective ordering include process id when you need to decide

vector clocks
generalization of logical clock
each process has its own counter (sizeol(vector) = count(processes))

7 MUTEX

7.1 mutex

conflict with unique resource

solution requirements

safety (nothing bad will ever happen, exclusive access gnaranteed)
liveness (eventually something good will happen, progress)
fairness (all have to make progress, all profit)

manager

manager coordinates access, has quene of processes which are waiting
process sends "request”, waits "grant”, notifies afterwards "release”
simple, few messages

manager is single point of failure

7.1.1 global queue

replicate quene at each process
use FIFO queues, messages contain timestamp (real or Lamport)
requests and releases are sent to all, requesis are conflirmed with ACK

Lamport

3(n-1) messages

each member has own queue

can use mutex if first in quene & received ACK from all others
request mutex by broadcasting "request” with timestamp, add to own
quens

release mutex by broadeast "release”, remove from queue

on receive of request, save into own queuce and confirm with ACK

on receive of release, remove it from own queue

Ricart / Agrawala

2(n-1) messages

can use mutex when received ACK from all other members

request mutex by broadeasting "request” with timestamp

on "request”, send reply if (lself_requested ||sender_time <my_request_time)
else wait till released mutex

8 Security

8.1 security

requirements

authorization (only specific entities have access)
privacy (attackers can't read message)
authentication (sender is verified)

integrity (message is unmodified)

availability (no DoS possible)

need to fulfil advanced requirements

non-repudiation (cannot deny the sending/reception of message)
prosecution (needs logging, need access to otherwise private keys)
compliance (conform to law, terms)

problems with distribution

harder to guarantee security in distributed systems

no central security authority

systems often open which allows to easier spot possible attack points
standardized protocols are attackable as one can craft own packets
spatial distance makes it hard to locate attacker

heavy usage makes an attack more valuable

physical separation often not possible

tools such as wireless make it easier to launch an attack
heterogeneity allows more attack points

hard to enforce common security policy

passive attacks
observe communication
"who when with whom”
read messages

active attacks
modify messages (modify, remove, create, resend, delay)
impersonate (behave as another process, use foreign passwords)

malicious usage of services
deny usage of services with DoS

authenticity

of service, confirm that connected to real service

of message, verify sender & verify message integrity
of saved data, verify integrity

security

want to provide encryption, anthorization, authentication

encrypt message, changes become visible

peer-anthentication, ask question only associate can answer
password, but not tied to identity (sniffing, secrecy not enforcable)
one-way functions, but no mathematical proof such functions exist

one-way functions

pick public non-inversible hash function f

client chooses n_0. hashes n times, sends n_n to server

each new connection sends one n before, server able to authenticate client
each password used only once (no reply attacks)

server has no secrets as only already invalid passwords persisted

8.2 cryptosystems

encrypt with K1, decrypt with K2

asymmetric if K1 1= K2

decryption is infeasible without the key

procedure should be public because difficult to keep secret, feedback useful

8.2.1 tricks

biased random number generators
1 / 0 may have different probabilities
therefore only choose pairs of 01 (=0) or 10 (=1)

transform 01001101011110 — 01010110

8.2.2 symmetric keys

advantages
1000 times faster than asymmetric

disadvantages

key must be secret

each communication partner needs different key
need to manage keys, high complexity

need to secretly exchange keys

examples

DES, AES

one-time pad

perfect encryption

crypto = M XOR pad

M = erypto XOR pad

if pad applied twice it is simply cancelled out

pad must never be used twice, or repeated, must be real random numbers
not practical because need large amount of authenticated encryption bits

8.2.3 asymmetric

public key server
must be authentic, communication must be secured

public key service
distributes certificated public key and its private key to member
transfers session keys securely and authenticated to the members

properties

every member has (p.s) public key p, secret key s

m can't be derived from {m}_p

s can’t be derived from p or {m}_p with known m, p
m = {{m}_p}s

maybe additionally m = {{m}=s}_p

advantages

exchange keys easy (p public, s not exchanged, 2n keys for n members)
authenticates owner (if able to decrypt {m}_p authentication successful)
digital signature (if able to generate {m}_s authentication successful}

8.2.4 authentication

symmetric way

A and B share key k

A= Bn

B—Am ={n}k

A verifies that {m’} .k =n

asymmetric way

Distributed Systems Seite 28

A—=Bn

B — A m. = {"command”, n}sB

A decrypts m-1 with public key of B and executes "command”
safe against replays (because of nonce), but not MitM

introduce public key server that A needs not to save B public key
need to secure public key server against tampering, impersonation

asymmetric way (both ways, introduce session key K)
I are nonces, m oare sent messages, I{ is session k(!_v

use asymmetric to send nonces (na, nb)

nonces confirm key is established with correct associate

A —+ Bm.l = {na}_pB

B — A m2 = {na, nb, K}_pA

A =+ Bm3={nb}.K

8.2.5 key agreement

with one time pads

A+ Bml={k}a

B— Am2={ml}hb

A can now XOR with a, and learns b

A = Bm3 = {k}.b

but advisory can learn k too if all messages known

with diffie hellman
choose public ¢ and p
A—=Bml=>5amodp
B =+ Am2=5bmodp
key = m-1"b = m_2"a
not safe against MitM

8.2.6 attacks

replays

simply resend messages without knowing exact content
can uses nonces which are only valid once

can use increasing sequence numbers

can use encrypted send time and max timeout at receiver

MitM

attacker redirects traffic between A and B to himself

key faking

attacker additionally sits between key server & A

places as MitM between A and B

now can fake the public key of B to one X knows the private key

8.3 interlock protocol

securely communicate with attacker in between

B —+ A sends challenge only A can answer

A — B sends encrypted answer, but only half of bits

A — B sends rest of the answer

B checks that first message is received in very short time

X can perform MitM by establishing key with B impersonating A
but X needs whole A message to do so

if X forwards first part immediately, X is not able to perform MitM
if X buffers till both messages received then B knows about intruder

8.4 authentication with certificates

certificates of A is singed by a trusted authority
A —+ B secret encrypted with public key of B
B — A sends back decrypted secret, confirming it has the private key

8.5 zero knowledge proof

A proofs knowledge to B without giving away the solution
verifier and prover interact together
but verifier can only prove to himself that prover knows answer

example graph isomorphy

prover says he knows isomorph graphs G1 = G2

prover construct H by renaming random knots of G1 or G2
verifier then requests mapping to G1 or G2

prover can do this easily as he knows H “G1 and G1 G2
process is repeated

8.6 up for discussion

global queue algorithms — some examples please

Wie ,,gut“ ist atomarer Broadcast?

1) Ist atomar
auch kausal?

2) Ist atomar
wenigstens FIFO?

[

Nicht kausal!

Atomar: P3 und
P4 empfangen
beide M, N — und
zwar in gleicher
Reihenfolge

3) Ist atomar + FIFO evtl. kausal?

,

Reliable) Total Order Atomic
roadcast # Broadcast
FIFO Order FIFO Order
FIFO Total Order FIFO Atomic
Broadcast | Broadcast
Causal Order Causal Order
Causal Total Order usal Atomic
Broadcast Broadcast

Distributed Systems Seite 29

FLOMO extracted

Mittwoch, 10. Januar 2018 14:12

snapshot problem
need a global view despite continuous changes

phantom-deadlocks
The observer might see a deadlock because B waits for C, C for A and A for B. But that could have
changed in the meantime (every wait is in a different timestep).

clock synchronisation
Assume drift is linear, but they can also have an offset if there is no drift

FIFO
send order = receive order
but allows messages to indirectly surpass other message via a different channel.

Causal Ordering

send order = receive order

indirectly surpassing is not allowed - anything causally dependent on the sending of A will not be
received bevor A.

Priority
How to prioritize and how to ensure fairness and neutrality and what fairness means are unclear.

Failure Modes

Crash/fail-stop

time failure (too early or too late)
byzantine/rogue behaviour
problem during sending / receiving

Communication types

message oriented

unidirectional

fire&forget

sending process can continue working directly after sending message

task oriented
bidirectional
result of request will be passed back to sender. Client waits until the response has been received

blocking send
The sender waits until it has a guarantee that the message has been received. The receiver might
send the ACK before actually processing the message.

synchronous communication
¢ blocking send and receive. The sender freezes until the receiver was ready, processed the
message and responded with ACK
e '"virtual simultaneity" : rubber-band movement possible so that simultaneous events are
simultaneous
e Deadlocks if cyclic wait-for-graph (both processes are receiving or sending)

async communication

Distributed Systems Seite 30

difficult debugging but is faster and less coupling. higher degree of parallelism, less chance for
deadlocks based on communication

4.6 communication in practice

a lot of high level access to send very specific messages
very efficient but difficult to get right, due to bad defined semantics

blocking

waits till message was sent from communication system (of sender)

non-blocking

informs communication system of available message

but does not wait for sending

returns handler which can be queried if message has been sent

synchronous
send operation returns after message was delivered to receiver
can simulate async using buffer

asynchronous
no guarantee that message has been delivered successfully
can simulate sync by waiting for explicit acknowledgement

stubs

take care of packing/unpacking (converting representations)
set timeouts, raise exceptions, pass messages

simulate "local” procedure call

can be generated

maybe-semantic no repetition of request easy and efficient useful for lookup services
at-least-once semantics automatically repeat requests stateless protocol on server side (no
duplicates can be discovered) nice for idempotent operations (reading a file) maybe uses more
resources than explicitly necessary

at-most-once semantic can discover duplicates, then just resends persisted replies nice for non-
idempotent stuff more expensive than at-least-once

exactly-once not really possible because if crashes occur no computations take place

5.4 tasks

non-pure
like writing a file

pure (”zustandsinvariant™)
simple lookups

idempotent tasks
repeated tasks lead to same result (but can be non-pure)

REST

Distributed Systems Seite 31

5.8.1 principles

client-server

consists of components who can connect to clients, to server or both
User Agend which creates requests

Intermediary which redirects request potentially modifying them
Origin Server which has control of resources

statelessness
request contains all info for processing; context held client-side
crash /orphans less critical, easier scaling and monitoring, caching

caching
meta-data determines how long response is valid
clients/servers consult cache for answers without further processing

uniform interface

addressing done with URI

requests are standardized (GET, POST, ...)

standard representations (XML, JSON, ...)

resources can provide multiple formats, client chooses applicable

layered system
clients don't know about server
intermediaries can be added at any point

code on demand
server can externalize logic to the client

5.8.2 properties

scalability

statelessness allows efficient servers / load balancing
caching reduces communications

adaptability

uniform interfaces decouple server & client

layering allows manipulation later
code on demand allows to update active clients

observability
requests which contain all infos are easily traceable

reliability
thorough uniform interfaces & layering allows for redundancy

Distributed Systems Seite 32

8 Security

8.1 security

requirements

authorization (only specific entities have access)
privacy (attackers can’t read message)
authentication (sender is verified)

integrity (message is unmodified)

availability (no DoS possible)

need to fulfil advanced requirements

non-repudiation (cannot deny the sending/reception of message)
prosecution (needs logging, need access to otherwise private keys)
compliance (conform to law, terms)

authenticity

of service, confirm that connected to real service

of message, verify sender & verify message integrity
of saved data, verify integrity

security

want to provide encryption, authorization, authentication

encrypt message, changes become visible

peer-authentication, ask question only associate can answer
password, but not tied to identity (sniffing, secrecy not enforcable)
one-way functions, but no mathematical proof such functions exist

Distributed Systems Seite 33

8.2 cryptosystems

encrypt with K1, decrypt with K2

asymmetric if K1 1= K2

decryption is infeasible without the key

procedure should be public because difficult to keep secret, feedback useful

8.2.1 tricks

biased random number generators

1 / 0 may have different probabilities

therefore only choose pairs of 01 (=0) or 10 (=1)
transform 01001101011110 — 01010110

8.2.2 symmetric keys

advantages
1000 times faster than asymmetric

disadvantages

key must be secret

each communication partner needs different key
need to manage keys, high complexity

need to secretly exchange keys

examples

DES, AES

one-time pad

perfect encryption

crypto = M XOR pad

M = crypto XOR pad

if pad applied twice it is simply cancelled out

pad must never be used twice, or repeated, must be real random numbers
not practical because need large amount of authenticated encryption bits

8.3 interlock protocol

securely communicate with attacker in between

B — A sends challenge only A can answer

A — B sends encrypted answer, but only half of bits

A — B sends rest of the answer

B checks that first message is received in very short time

X can perform MitM by establishing key with B impersonating A
but X needs whole A message to do so

if X forwards first part immediately, X is not able to perform MitM
if X buffers till both messages received then B knows about intruder

Distributed Systems Seite 34

example graph isomorphy

prover says he knows isomorph graphs G1 = G2

prover construct H by renaming random knots of G1 or G2
verifier then requests mapping to G1 or G2

prover can do this easily as he knows H "G1 and G1 "2
process is repeated

Distributed Systems Seite 35

algorithm dump

Mittwoch, 7. Februar 2018 18:19

2.4 Randomized Consensus

Algorithm 2.15 Randomized Consensus { Ben-Or)
1w € {0,1} < input bit
2 round = 1
4 decided = false

1: Broadeast myValue(w,, round)
5 while true do
Propose

6 Wait until & majority of myValue messages of current round arrived
7 iF all messages contain the same value ¢ then

& Broadeast propose(y, round)
3 else
10 Broadeast propese(|, round)
11: end if
12 if decided then
13: Broadecast myValue(u;, round41)
14: Decide for o and terminate
15 endif
Adapt

16: Wait until a majority of propese messages of current round arrived
17: if all messages propose the same value © then

18: W=

1% decide = true

200 else it there is at least one proposal for © then

21: W=

2 else

23 Choose w randomly, with Prly, = 0] = Prly;, = 1] = 1/2

24: end if

25 round = round + 1

26: Broadeast myValue(w;, round)
27 end while

broadcast a random value. If a majority answers with one value, propose this value => at most one
value was proposed.

Then wait for a majority of propose messages. If all want the same, then we take that value and
terminate after broadcasting it again for this and the next round. If some proposed null, then store
the v but not don't terminate yet because others need our knowledge. Broadcast that value and
restart.

If nobody of that majority proposed any value, choose a different random value, broadcast it and
restart.

Some nodes propose, others don't because they see some disagreement within the (not complete,
only the majority) set they receive.

We wait for a majority only, because that is enough. But then it is possible that other nodes still
disagree (didn't get the value from a majority of broadcasts and thus propose null). So the other
nodes will stay random until they get at least one value proposal - this must happen if we wait for a
majority of proposals and there actually is a majority of value proposals. If there is a majority of
value proposals, we're basically done: Everybody receives at least one and in the next round
broadcasts and proposes that value. Otherwise, the setting changes randomly until a large number
of nodes get the same value by chance so that the majority will propose the value.

Distributed Systems Seite 36

2.5 Shared Coin

Algorithm 2.22 Shared Coin (code for node)

1:
2

o

Choose local coin «, = 0 with probability 1/n, else ¢, = 1
Broadeast myCoin(e,)

Wait for n — f coins and store them in the local coin set O,

: Broadeast mySet ()

: Wait for n — f coin sets
: if at least one coin is () among all coins in the coin sets then

return ()
else
return 1

end if

Algorithm 1.13 Paxos

Client (Proposcr) Server (Acceptor)
Tmatalezalion ...
[< comanand to execute Tinax = 0 4 lorgest issued ticket

t =10 4 ticket number to try
=1 < stored commaend
Totore = U < ticket used to store 7

t=t+1
Ask all servers for ticket ¢
3 if 1 = Tax then
d' TI'I‘I!'IK_E
5 Awswer with ok(Taon, C)
6. end if

7: if a majority answers ok then

1
11:
1::

13:

1%:

20
21:

Pick (Tipore, €') with largest Thore

if Topore = 0 then

o=
end if
Send propose(t,) to same
majority
end if
14; if £ = Tax then
1% C=e
16: Toore =1
17: Answer success
1% end if
F T A

if a majority answers success
then
Send execute(c) to every server

end if

Paxos does not guarantee termination. E.g. if no client ever gets a majority

Distributed Systems Seite 37

