Endterm Recap

Dienstag, 20. Dezember 2016 09:25

Impulses
Filter: h in Matrixreprasentation

Input: x
Output: y

duration(output signal) < duration(input signal) -+ duration(impulse response)

Therefore, if we know that all input signals are of the form (..., xg,x1,..., Xy 1,0,...), we can model
them as vectors x [x{], . 1] ! € R", ef § 4.0.1, and the filter can be viewed as a linear mapping
F:R" — R™"1 which takes us to the realm of linear algebra.

Thus, for the filter we have a matrix representation of (4.1.14). Writing y = [yo, ..., Yan 2 Fe R 1for
the vector of the output signal we find in the case m = n

Xo

(4.1.18)

| Xn—1]

_y 2n-2 |

0 \[)}1‘,,_1_

Matrix H ist zwei n hoch, damit auch h,,_; nicht von anderen h beeinflusst
wird. Es ist also moglich, einen linearen Impuls so als periodischen
darzustellen, indem man eine Periode von (2n-1) wahlt und mit nullen
auffillt. (Das minus 1 ist wegen indexing)

We model the signals as vectors x and the Filter as linear mapping from R" to
]Rm+n—1

Def: Discrete Convolution

y; = H.row(i) * X = nennt sich discrete Convolution= Z;féght(m xihj_y

n-Periodic setting

Impulses add up. In each row of H, the impulse h; is one further to the right,
so when each x is smaller than the one before it, we have something like the
following. but blue and orange add up.

[T T T Tt

. S A
N~ ?“\

Formula is still y;, = Z}';ol Dr—1X;- at Il = 0, we have

p="h =01 - ho)
and therefore we have the interference from n-1 (and all later too, but these
are not in the drawing)
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Because it is n-periodic, the dimension of H is only n, because there is always
interference from before.

Circulant matrices and Discrete Fourier Transformation

Note that the coefficients py, ..., py 1 do not agree with the impulse response (- Def. 4.1.3) of the filter.
However, they can easily be deduced from it. In matrix notation (4.1.26) reads

" o ] [P0 Pn1 Pn2 - P.1_-xn-
. m Po Pn-1 : .
p2 P1 Po .
= : . (4.1.27)
: : . Pn-1 i
Il Apea popo )t
P
= (P)ij = pijs1 <i,j <m, withpj:=pjuforl—n<j<Oo.

Definition 4.1.33. — [8, Sect. 54]

A matrix C = (t‘fj);{j 1 € K™"is circulant (ger.: zirkulant)
R 3 (g )kcz n-periodic sequence: ¢ =uj ;1 <i,j<n.

different random circulant matrices have the same eigenvectors.
Graph of larger circulant matrices' Eigenvectors:

P e

o it et e e

————

P v Lozt moer

The eigenvectors remind us of sampled trigonome functions cos(k/n), sin(k/n), | ) n—1!

All complex of course

—2mi
Def. Root unity: w, :==e n = cos (27”) —isin (En’E)
These are equally spaced in the complex plane in a circle around (0,0)
2mi N

wy! = e T = complex conjugate = w),

g n—1
Random introduction of Eigenvector vy, = [m{lk]_ ECY, 0<k<n
j=n
Take any circulant Matrix C with dimension n, generated from vector u
>rowlof C= U Up-1 Up—2 .. Uz)//likethe pintheimage
Cvy :-vk per definition

Formula of periodic convolution =>j — th line (C vk) =yt u; - (vk)j_l

. N kj
einsetzen der definition von v, = Cv, = oonJ

kj ; o .
> w, = (vk)j = A = Eigenwert von C and vy, is it's eigenvector

orthogonal trigonometric basis of C" = Eigenvector bassis for circulant matrices =
o qn—1
vectors vy, defined as [u)flk] :
j=n
Fourier-Matrix transforms this basis to the standard basis
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The matrix effecting the change of basis trigonomstrical basis — standard basis is called the Fourier-

matrix
w?, wﬂ (_5!‘;
1. n

1]
“r o
F, = (wn @i - . [wﬁ,’] e, (4.2.13)
: : : 1j=0
W W1 L i1

n n n

Lemma 4.2.14. Properties of Fourier matrix

The scaled Fourier-matrix \/lEFn is unitary (— Def. 6.2.2) : F,1 = ,1—11-'1,' = %Fn.

There is a Diagonalmatrix D such that

CE, =E,D
This is obvious if | look at it line by line, as F,, contains the Eigenvectors of C. These
stay the same, but scaled, so only the diagonal will be set. It works because (grey

arrows above) F, has the same rows as columns.
n-1

_ —kl
Dy = Z Uy wy

1=0
additional Fun Fact: w,*' = (F, = D=FKi

= all Circulant matrices have the same Eigenvalues. Only some scaling
determined by u, but as scaling an Eigenvector/value pair is always possible...

From the wikipedia article

In numerical analysis, circulant matrices are important because they are diagonalized by a
discrete Fourier transform, and hence linear equations that contain them may be quickly solved
using a fast Fourier transform.[1]

[1]: Davis, Philip J., Circulant Matrices, Wiley, New York, 1970 ISBN 0471057711
http://www-ee.stanford.edu/~gray/toeplitz.pdf
In simple terms, why this holds is that:

1. A circulant matrix has all its rows being cyclic permutations (eyelic shifts) of the same row.

2. The fourier transform (DFT) is efrcular, meaning its basis is polynomials on the roots of unity
which are invariant under cyelic shifts (on the unit circle).

(%]

. Thus if expressed on the DFT basis, each row of the matrix is only a shift away from the
reference (original) row. But a shift, in DFT terms, is simple multiplication by a root of unity,
thus only the diagonal elements need be non-zero, to describe the appropriate shift (think of a
clock, and shifting as changing the angle of the pointer, i.e simple multiplication by a root of
unity)

Fourier Matrix contains the Eigenvectors AND the Eigenvalues of any Circulant
Matrix

Eigenvectors = pairwise orthogonal

= scale by the right factor and F, is unitary

° n, form=k YoMkl =1xn
Ve Uy = because .
0, form=#k something
"something":
-1
Ya-t
at= ——
‘ a—1
=0
m+k\"
; _ m+k_(“)" )_1_ -1 _
Witha = w,'™™ = ok T omiEoy 0

//Geometrische Summenformel

Lemma 4.2.14. Properties of Fourier matrix

/n n T

The scaled Fourier-matrix \—}—F,, is unitary (— Def. 6.2.2): F 1= J;F!,‘ 1F,.
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Lemma 4.2.16. Diagonalization of circulant matrices (— Def. 4.1.34)

For any circulant matrix C € IK"", ¢;; = u;_;, (uy ez n-periodic sequence, holds true

CF, = F,diag(dy,...,dn) , d=Fyfug,..., un_1]" .

//Why does that Lemma follow?

F_‘n = FnH

Zeilen in Fouriermatrix = Spalten = Eigenvektoren von C

C(Fn)Spaltei = C(F”)Zeize = Cv; =v; - eigenvalue = v; -y

= Diagonalmatrix skaliert jeden Spaltenvektor im ergebnis um das i
— te diagonalelement

a b c a b c\fdy 0 O a b c
Cc b d e |=- = b d e 0 d1 0 = do[b],dl d ,d2 e
c e f c e f/\NO 0 dj c e
= Weil die eigenvektoren mit den Eigenwerten skaliert werden, gilt D
n-1
= diag(eigenwerte) = Z Uy
1=0

From Lemma 4.2.16 follows that we can Calculate C and therefore Cx using Fourier:

1_ — -1
Cx = ;Fndiag(dl,..,dn)Fn x

This is a periodic discrete convolution.
=F;Ydiag - E, x

Therefore this operation has been given a special name:

Definition 4.2.18. Discrete Fourier transform (DFT)

The linear map F, : C" ++ C", Fy(y) := Fypy, y € C", is called discrete Fourier transform (DFT),
ie. for c:= Fyu(y)

n—1 .
= L:y,-wi’ , k=0,...,n—1. (4.2.19)
=0

= instead of having to calculate a big Circulant Matrix multiplication (height 2n-1),
we can calculate a convolution by multiplying x with the fourier Matrix, scaling this
with the transformation of u and then inverting the whole transformation again

This is nice because DFT € O(nz) can be computed fast using FFT € O(n log(n)).

Zero Padding
We now have a function that takes u and x as argument and performs a
convolutiony = C(uw) - x = F, - (E,u) - F, - x
In the beginning we had a H-Matrix (Filter) which is always circulant so this works
always. If we don't have periodicity, we can pad with zeros to remove interference:
U has size n
C(u) has size n X n for n — periodicity
padu’ — size 2n — 1
= C(u') has size (2n — 1) X (2n — 1) = no interference
x has to fit the second dimension of C = x has size 2n — 1)

Frequencies
orthogonal Trigonometrical basis (Fourier basis) & oscillations
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ki1t 2rkj
Vg = [oon ]j=0 = [cos| —

Hi%{frequencies

rap <

)

46

e

Daw frequencies |

Plots of real parts of Columns of Fourier matrix F; ¢ (trigon. basis). k stands for the

k-th column.
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e

for high k, the frequency seems slow again (but in other direction, like with a

stroboscope view)

DFT in 2D

Basis of 2D: because F is basis in 1D
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-1 n T
Vn = {[w,l}{ :io ([wlrip]]po) }1;:0,.,

,m-1
p=0,..n-1
vk HQ L L v(l+k) ulj+q) vl mj L L vk Hq
A KAL) 1j  k=—Lg=-L A J=-le=L
\___r‘_i
Yy = egenveclon = W, 4
‘3’ ﬂpv

is eigenvector of B because it stays there (definition of eigenvector and
eigenvalues)

B is the Blurring operator.

DFT in 2D is defined like that V => same as just two DFTs after each other

(4.2.43) Matrix Fourier modes

A two-dimensional trigonometric basis of C™" is give by the tensor product matrices

{En)jE)p1<j<m1<e<n}cem, (4.2.44)
Letamatrix C € C™" be given as a linear combination of these basis matrices with coefficients y;, ;, € C,
0<j<m0<j<m
m-1n-1 [
C=3" ) Yo (Fm).jy (Fn),, - (4.2.45)
j1=0/2=0

Then the entries of C can be computed by two nested discrete Fourier transforms:

m—1n—1

m—1 n-1

iy ks fak: i1k izk:

(O = X, L Uhp @i = zw’%‘b: wf %»h)' 0sh <m0<k<a.
J1=0j2=0 =0 j2=0

The coefficients can also be regarded as entries of a matrix Y € C™", Thus we can rewrite the above
expressions: forall 0 < k; <m,0 <k, <n

m—1 .
(Ot = L (Fu(Y)j) @kt B | C = Fn(FaY")" = EnYFy | (4.2.46)
=

r
-

= Fm]CFn] = LF,CF, |. (4.2.47)

mn

m-1n-1

C= E Zyh,jg(Fm}:,ﬁ(Fn);‘; = Y
h1=0j2=0 /P

Fov “5&& Prj;( fmcgi

Why loop through rows instead of matrix mult? (Because the function fft was
defined for vectors. these both work, because F is symmetric)
Is Fourier transform not from normal to fourier? -> Probably tablet notes wrong

Deblurring
https://www.youtube.com/watch?v=YhLF95crTWs
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https://www.youtube.com/watch?v=YhLF95crTWs

Blurring Operator B is given as pixelwise

Blurring = pixel values get replaced by weighted averages of near-by pixel values
(effect of distortion in optical transmission systems)

L L
0<l<m, .
qi: kZL ZLS;WP, itgr < j<n, Le{l,...,min{m,n}}. (4.2.57)
= — q:— -
blurred image  point spread function

What's cool is that if we insert w%"wfnq for the point, we get the same thing again
but scaled, so this is an eigenvector of B. Dividing Bv = Av by lambda gives that B
is a simple cwise multiplication in Fourier space. So the solution for deblurring is to
switch to Fourier space, divide cwise by s and then switch back.

L L L L
k v(I+k) (it 1 i k
(B((w;wn*‘")k z) = Y L sk Ol el Y Y stk
ASL) 1 k= Lq——L k= Lg—L

> v, = (w;kwg‘?)quez, 0 < u < m,0<v < nare the eigenvectors of B:

BVyu=AyuVyyu , eigenvalue Ay, = Y X spwnah

2-dimensional DFT ofvpoint spread function !

Note: Inversion of blurring operator < componentwise scaling in “Fourier domain”

- DFT-busel deblurivg . 2> B
() PRI2 P> Y
(i) Y. canse Quolind (L Ay T)
(i) ioveoe FHQ - (4.297)
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Eshmabng PSFE = S,
P = et }hmarw
CL' = plined /'magw

[s 7T := rnm>flﬂ3ﬁ PGl
K4 [f'fcq] ] L= rkﬁ]

//Skript example code probably confused ifft and fft in the last line

//Actually, Hiptmair just replaced ifft and fft until it worked, the problem is that the
point spread function has positive exponent instead of our usual negative
exponents for fourier

v=[ _., m

Fast Fourier Transform
Divide Sums into a sum for the even and a sum for the odd indizes of the given
Vector.

Recursion => 0(nlog(n))
for size of y called n = 2m:

fn—1 ,
_2mi g
o= Y e
j=0

m m—1 2m Zm 2i+1)k
, -1 .
_2mi 2mi 2ri ;
— E Tk ek, ) ce mik
yz; k = Yok+1 ¢ : ,
ok ok

Toeplitz Matrix

Given the duration of the Impulse response: n < m
m-periodic Linear Time-invariant filter.

Measured yy,

known Input x

Sought: Estimate of the filters impulse response

n—-1

Jh € Rn:yk = Z hjxk_j
j=0
measurement errors => use all available h (not just the first n)
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[ x0 x1 --- S Xl |
X1 Xp X1 r y[] T
: X1 Xg h{}
Ah — = . . . — — min .
|Ah —y, : Lo e
Xp-1 X1 Xp
Xy Xp-1 X1 hy 1 :
LYm—1]
7xm_1 e - xm—n, 2

> Linear least squares problem, — Chapter 3 with a coefficient matrix A that enjoys the property that
(A)jj = x;_; (constant entries of diagonals).

The coefficient matrix for the normal equations (— ??, Thm. 3.1.10) corresponding to the above linear
least squares problem is

m
M:=AHA (M);; = Y xix j=zij due lo periodicity of (xg)kcz -
k=1

> Again, M € IR"" is a matrix with constant diagonals & s.p.d.
(“constant diagonals” <+« (M)J—J- depends only on i — j)

Normal equation ATAx = ATh

A has constant Diagonals: x; j = x;_; = (ATA)l,j = Z Xi 1 Xk, j

k
m—1

= Z Xi_kXk—j = Data only dependent on Tuple (i, )

k=0
constant diagonals => m+n-1 actual information content numbers = Toeplitz

matrix can be displayed with a vector u = (u_m+1, ,un_l)
Extend to Circulant matrix of size 2m x 2n

The following formula demanstrates the structureof €in the case m = n.

[ 1 T ER cee Uy 0wy - cee o ug ]
T ug | Uy : iy 1 0

i : LT Uy

c - UY—n u_1 il Uy Uy 0
0 Ly g =-- . o g i Uy 1

uy 1 |0 uoq My M :

. . - Mg 17

Uy Hy 1 0 M.y - e M4 Up

0 idgaf
This is like a convolution, so we can solve this using FFT.

Now instead of Tx, we can calculate C (x) = < Tx >

Householder QR repetition

Householder matrix creates a rotation of the vector such that the result is just as
long but a multiple of the first unit vector. If we construct a Matrix Q in such a way,
that it turns the first column of a matrix into such a vector, then we can apply
multiple of these Q until the Result R is upper triangular.

Q,.-Q:A=R

if the Q are orthogonal, then we can multiply on the left with their Hermitian
Transposed to get

A=0Q .. QFR

and these Q¥ multiplied together are the orthogonal matrix Q.
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To construct a Q, we choose a b that is parallel to a unit vector and use
Fig. 102 sketches a “geometric derivation” of Householder reflections:

Given a,b € R"” with ||a] = ||b]|, the difference
vector v = b — a is orthogonal to the bisector.

viv

b=a—-(a—b)=a—v—
v'v
T v
=a—2v—=a ZTa=H[v]a

because, due to orthogonality (a—b) L (a+ b)

(a—b)T(a—b)=(a—b)T(a—b+a+b)=2(a—b)Ta.

//smart zero additions
2vv
vHy

Q:H(V) = 1— m

which is orthogonal, though | don't know why

H
=>Q=Hw)=1-

WH

with v = 1(a+ |jale;) .

Interpolation in 1D
Piecewise Linear Interpolation

Connect measured points by lines.
for Formax = b: a = slope = %1-, b = where line cuts y
i—li-1

adding up tent functions: they have to be not influencing any other
points and add up to a line in between points.

height 1 because they can be scaled using coefficients
Interpolation as linear Mapping
BaseFunctions * Coef ficients = measurements
e .

bo(fo) ... bm(to)| | co Yo
Ac: 1 : : : ‘Y
n

I!IT[]I:;f,r,uj] hm“ﬂr}' Cm

=>need m = n = Anzahl measurements = Anzahl base vectors
Polynomial Interpolation

Horner Scheme: Instead of calculating a polynomial p(t) by calculating all
powers of t, you can calculate it recursively

p(t) = t(- - H(Hant + 0y 1) + 05 2) + -+ 1) +ag . (5.2.6!
=> lineare zeit
Lagrange Polynomials as Cardinal Basis
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— h(0 () 50 hix) === L)

. 7
5-— .I_,rf;f‘ .
[
; /
Fd i
B - o //1’ :'l
L - ‘--‘_‘. iy v
q . i /
4 - h\ // !;
L *, ’ ]
S d L
I \‘\\ /// ,"’
2k o Il
b \ \\ y ~ 'J
p—i— ,u,‘__\_' \\_‘ ___.-_-":’_-,,_.———_'_ — _;‘f_ -
e N S
i ~ /
- \\\ ‘.»
_2 . "\ _ ,:"'
i hﬁ""'-.._;__.-.-r"..’ _
-4 | A L L
-5 [\ 5
This image shows, for four points (-9, 5), =1, -2), (7, 9)), the &
{cubic) interpolation polynomial L{x) (dashed, black), which is the sum of the
scaled basis polynomials yfq(x), L ¥ofs(x) and yafs(x). The interpolation
polynomial passes through all four control points, and each scaled basis
polynomial passes through its respective control point and is 0 where x
corresponds to the other three control points.
Fornodes ty < Iy < --- < t; (— Lagrange interpolation) consider the
. Lob—t
Lagrange polynomials ~ L;(t) := e 1 0,...,n. (5.2.11)
jo i
J#i

=>»  Evidently, the Lagrange polynomials satisfy [; € P, and

and based on that Basis the Lagrange interpoland p(t) = Xi, y;L;(t) which
is just the sum of all Lagrange polynomials. It fulfills p(ti) =Y.
fast by precomputing part of L;

n n n t_ tj n n n n )L!_
p) =) L yi=  [li—Fvi=LAllt-t)wi=]1¢-t) -} = w-
i=0 i=0 .;/? * T i=0 ;/? j=0 i=0 ¥

1
(ti—to) -+ (b — tica) (b — biga) -+ (b — ta)
=> precompute '

_o(t —t;) or the sum,and lambda. Calculate the other one from it
Laufzeit: without precomputing: Sum n, product n, evaluating all t; N =>
0(Nn?)

with precomputing: 0 (nN)
From above formula, with p(f) =1, y; = 1:

where Ai =

,i=0,...,n

1

" L n
e ,1]'_([}(r " :‘Zuf — ki ’ }_;[J“ i = L ur_A'r,
i ' ijf. Yi
== Barycentric interpolation formula p(t) ="* (:r /\-: . (5.2.28)
r—:r,-

this works because we know that p has to be 1 where 1is 1

partial Lagrange interpolant
Aitken-Neville scheme: k < l. Good for single evaluation

Num Seite 11



Z;k'zlmique polynomial of degree (1
— k) through the known points (t, y)k (t, y)l
First, set polynomials through just the k-th point:
Piek (X) = Vi
From these, derive interpolating polynomials through more points:

1
Pra(x) = P— ((x — ti)Prer1,1(X) — (x = tl)pk,l—l(x))

so we weigh the polynomial in the interval to the right based on how
much to the right x is, and the left polynomial based on how much to
the left x is. (Assuming t, < x < t;, this will result in an addition. If x is
not in the interval, then what?)
Dividing the whole thing to rescale it back to normal
Extrapolation to zero
same as interpolation but with x outside the interval.
Lagrangian
works well if function is even: ¢(t) = ¢p(—t) and ¢ behaves nicely around h
Given: smooth function f in procedural form
Sought: approximation of f’
Idea: approx using difference quotient. but then we have cancellation.
Neville Aitken
Numerically stable alternative: symmetric (thus function even needed) difference
quotient behaves like a polynomial for 2(n + 1) times continuously diffable
function. We use the fact that the differencequotient is approximable as a
taylorpolynome and therefore with a polynome. Use neville-Aitken starting with
small intervals from (x-h) to (x+h). The longer it takes, the larger the intervals and
the better the approximation. Thus, the error is estimated by the difference
between two last approximations.
Newton Basis (Update-friendly)

No(®) = L,Ny () = (¢ — t0), Ny () = H(t —t;)
t=0

leading coefficient is 1 because else polynome wouldn't have the rank n
= System of Linear equations

aONO(tj) + alNl(tj) + -+ anNn(tj) =Y j=0,..,n

n Equations. Solving with forward substitution
Our tool now: “update friendly” representation: Newton basis for Py

No(t):=1, Ni(t):=(t—to), ... , Na(t):=]](t—t). (5.2.49)

Note: N, € P, with leading coefficient 1 > linear indepdence > basis property.

The abstract considerations of § 5.1.11 still apply and we get a linear system of equations for the coeffi-
cients a; of the polynomial interpolant in Newton basis:

aj € R: HL}Nu(ff') { EJIN'[“J:) SRR ﬂnNn(fj) Y. ; 0,...,n.
& triangular linear system
1 0 s 0
. Ap Yo
1 (b —to) : Py "
: : 0 . = '
n—1 ' '
1 (fn h]_}l e Il (f” fr) An Yn
i=0

=> same values computed again in each row. We can reuse them. If we add a
point, we can just add a row and compute the latest a.
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Newton basis polynomial N;(t): degree j and leading coefficient 1
=+ ajis the leading coefficient of the interpolating polynomial py ;.

(the notation p,, for partial polynomial interpolants through the data points (¢, y¢),..., (b, Ym) wWas
intreduced in Section 5.2.3.2, see (5.2.34))

apply recursion from aitken neville:
B¢ im — Bfm—1

09 = : 2 . 5.2.51
tm — b { ’

then we use the "divided differences" instead of solving the triangular linear
system above.

y(t:) = yi
_ Y(tiss, oo tivr) = ¥(to o tig—1)
y(ti, ""ti+k) = —
tivk — 4
7)’(9) — @) ~ fl(z)forz~y
y—x
This approximation can be turned into an identity whenever Taylor's theorem applies.
(y—2)* (y—=2)°
W) = f@) + f' @) -2) + f'(a )-T + @) g
f(y) - f(lE) ' 1 I ( - E)Q
[ _|_ . o
= =@ ) 2)

Trigonometric interpolation
Reduction to lagrange

Das Problem wird einfacher, wenn wir es in der kemplexen Ebene beschreiben. Wir kénnen die Formel fiir ein frigenometrisches Polynom umschreiben zu

n
plz) = z e,

j=-n

wobei i die imaginare Einhait ist. Setzen wir z = € dann wird daraus

plz) = Z o2,

construct sine from complex numbers

—_— 1,00 L

, . cost = s(e" +e ")

¢t =cost 4 1sint = { ) ”; " u
sint = 5(e" —e 7).

2n
j=0

Don't really get this....
Equidistant trigonometric interpolation
Don't really get this...
Approximation by global Polynomials
By Taylor
fecHLf(t)

~ F(to) + £/ (t0)(t — to) +1 ( ) (¢ =g et L ( ) (¢ - )"
smoothness requirement!
Problems for Numerics:

Stability

Need derivatives to calculate. But we don't have the higher derivatives.
Bernstein
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Theorem 6.1.6. Uniform approximation by polynomials

For f € C°([0,1]), define the n-th Bernstein approximant as
: n\ ; i
pn(t) = ):;lof(l/n)(].)t’(l )", ppePy. (6.1.7)

It satisfies ||f — pull. — 0 forn — co. If f & C™([0,1]), then even ”f"‘) - pf,“)" 0 for
n—ooandalld <k <m.

= Notation: g(¥) = k-th derivative of a function g : I © R — K

Polynomial Best
Interval from-1to 1

Theorem 6.1.11. L™ polynomial best approximation estimate

If f € C"([—1,1]) (r times continuously differentiable), r € IN, then, forn > r,

(n—r)!
n! |

f(’)

: - < 72/\T )
p'g‘,ﬁnllf Pllis(-1a) < (1 +772) S

r is the smoothness. Error Converges with rater.

Transformation to Polynomial Best in interval
Assume that an interval [a,b] C R, a < b, and a polynomial approximation scheme A: A([-1,1]) -
P, are given. Based on the affine linear mapping

®:[-1,1] > [ab] , ®F):=a+}(F+1)(b-a), -1<i<1, (6.1.15)

we can introduce the affine pullback of functions:

(=1

D C[a, b)) = CO([-1,1]) , @*(f)():=f(®(F), —-1<i< (6.1.16)

Lemma 6.1.20. Transformation of norms under affine pullbacks

For every f € C°([a,b]) we have

”f”L"“(Mjr‘) = ||¢'f||1‘w(\ 1,1) - ”f”LZ(\u,h) = \/ |b—al ||4"f"l,2( 1,1]) - (6.1.21)

Error estimates
Theorem 6.1.37. Representation of interpolation error [4, Thm. 8.22], [7, Thm. 37.4]

We consider f € C"* 1(I) and the Lagrangian interpolation approximation scheme (— Def. 6.1.25)
for a node set T := {to,...,tn} C 1. Then, for every t € 1 there exists a 1, €
|min{t, to,...,tn},max{t, to,..., tu}| such that

B B f(ndl)(.‘.') ‘ n L
f() =L (f)(t) —m ’I—!(t t,)- (6.1.38)
Lagrange error
17" ey
Thm. 6.4.44 = | [|f = Lrfllpey < = T&x|(t—10) ..... (t—t)| |.  (6.1.50)

Chebychev
We cannot control f but we can play with the position of the t. We try to minimize

max(t — tg) ... (t — tp)
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Are there polynomials satisfying these requirements? If so, do they allow a simple characterization?

Definition 6.1.75. Chebychev polynomials — [5, Ch. 32]

The n'h Chebychev polynomialis Ty(t) := cos(narccost), —1<t<1,neN.

The next result confirms that the T}, are polynomials, indeed.

Theorem 6.1.76. 3-term recursion for Chebychev polynomials — [5, (32.2)]
The function Ty, defined in Def. 6.1.75 satisfy the 3-term recursion

Tui1(t) = 20To(t) =Ty 1(t) , To=1, Ti(t)=t, neN. (6.1.77)

Proof. Just use the trigonometric identity cos(n + 1)x = 2 cos nx cos x — cos(n — 1)x with cos x = t.U

Optimal because that yellow theorem 6.1.81
these clutter at the endpoints. That was the problem at the equidistant try. if we
fix the endpoints better, we don't have weird oscillations there

We consider Runge'’s function f(t) = ﬁ, see Ex. 6.1.41, and compare polynomial interpolation based
on uniformly spaced nodes and Chebychev nodes in terms of behavior of interpolants.

: . ' ——— Furction |
1
o8 p"lll '\
, "."‘l "\ll
1 )
e il.’lll '.\‘.
/ i
o . / \
4 L
o - ‘..’4 .\ Mg
o, mes
I b Sty
o 5 4 3 2 1 o 1 2 3 4 5 5 4 3 2 1 L] 1 2 3 L) 5
220 Fig. 2 1
Equidistant nodes Chebychev nodes

We observe that the Chebychev nodes cluster at the endpoints of the interval, which successfully sup-
presses the huge oscillations haunting equidistant interpolation there.

/T he Chebychev nodes in the interval I = [H,m

are
2k +1
tx :—ﬂ+%(h—ﬂ) ms(mﬁ] +1),
(6.1.86)
k=0,...,n.

N J

lebesgue constant was also something here

seems important: Approximation by piecewise polynomials

Standard product rule:
By simple induction using the standard product rule (fg)’ = f’'¢ + f¢’ one shows

m m

W)=Y |g®)-TLs(®) (5.0.14)
k=1

=1 =
/ k2

Quadrature
To approximate integral by using a weighted sum of point values.
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Definition 7.1.1. Quadrature formula/quadrature rule

An n-point quadrature formula/quadrature rule on [a, b] provides an approximation of the value of
an integral through a weighted sum of point values of the integrand:

b n
[ rwd = Q= Yup £y 712)
;_

In this definition you can essentially ignore the superscript n

Terminologv: w;’ . quadrature weights € R
erminology- a::j? : quadrature nodes € [a, b

cost of quadrature formula=n
quadrature formula is different depending on the Interval, but we can construct
them based on other quadrature formulas
Given QF on [-1,1]
1
®:[-1,1] » [a,b] ¢(T)=a+ E(b —a)(t+1)
//Verschieben, skalieren, an richtigen ort schieben
b 1 1
do 1
= [rwa=[ fo@)|[E@la=30-0 [ f6w@)d
a -1 T 2 -1
Integration durch substitution
ac
/=

Given: quadrature formula (E}-,@;): , on reference interval [-1,1]

Idea: transformation formula for integrals

ff )dt = 3(b _af fayar, (7.1.5)
T) —f(%('l—"r)a+ s(T+1)b).

— ‘\ _ -

o 7 1 a b
T b= O(T)t = (1 —1)a+ J(r+1)b

Note that fis the affine pullback ®* f of f to [1, 1] as defined in Eq. (6.1.20).

B> guadrature formula for general interval [a, b], a,b € R:

n . n _._l = 1 G
P F(hy e~ 16— 9 £ af(@) = £ wfie) win 6 =2(1-5a+3(1+5)b,

wj = %(b— a)iw; .

/—\\ The midpoint rule is (7.2.2) forn = 1 and ty =
2 7 %(a + b). It leads to the 1-point quadrature formula

2 b

[ Fdt = Quplf) = (b~ a)f (3@ +1))

a

. \ “midpoint”

<] the area under the graph of f is approximated by
the area of a rectangle.

[ ] 2 25 B a5 4
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25
> trapez := newtoncotes(l);

Qup(f) i= 3(0) + £(1) (7.25)

- 18

b
([rwars" @ + 1)) -

05|

Definition 7.3.1. Order of a quadrature rule

The order of quadrature rule Qy, : C%([a, b]) — R is defined as

order(Qy) := max{m € Nop: Qu(p [ p(t)dt Vp e Pu}tl, (7.3.2)

that is, as the maximal degree +1 of polynomials for which the quadrature rule is guaranteed to be
exact.

This is a convention: if it gives up to polynomial of degree 2, it has degree 3
Order is invariant under affine transformation.
Theorem 7.3.38. Quadrature error estimate for quadrature rules with positive weights

For every n-point quadrature rule Q, as in (7.1.2) of order q € N with weights wj > 0, 1=1couh
the quadrature error satisfies

b
:M f(H)ydt —Qu(f)| <2|b- alp‘iglflnf— Pllimapy Vf € C([a,b]) . (7.3.39)

2 ST
best approximation error

Theorem 6.1.15. 1. polynomial best approximation estimate

If f € C'([-1,1]) (r times continuously differentiable), r € N, then, for any polynomial degree

n>r,

= r(” (r)
g 1f = Pllimgoany < 42y O g

L=(-1,1))

Lemma 7.3.41. Quadrature error estimates for C"-integrands

Under the assumptions of Thm. 7.3.38 and with the notations introduced there, we find for f &
C"([a, b)), r € Ny, that the quadrature error E,( f) satisfies

inthecaseq >r:  En(f) <Cq "|b - a "lf(’) R (7.3.42)
.~(|a,
inthecaseq <r: E < 7” (‘”” z 7.3.43
q 25— 1) s (7.3.43)
with a constant C > 0 independent of n, f, and [a, b].
Theorem 7.3.5. Sufficient order conditions for quadrature rules
An n-point quadrature rule on [a, b (— Def. 7.1.1)
n
Qu(f) == Y wif(t;), feC’ab]),
T
with nodes t; € [a,b] and weights w; € R, j = 1,...,n, has order > 1, if and only if
wj = JLf t)ydt, j=1,...,n
where Ly, k = 0,...,1n — 1, is the k-th Lagrange polynomial (5.2.11) associated with the ordered

node set {tq, t2, ..., ty}.

Smoothing integrands by transformation

b
f VEf () dt with f € ¢*U0DPD
a
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non-smooth integrand : slow algebraic convergence of quad. error

S ds _ 1 _ _
Idea: substitution: s = Vt = Vi dt = 2\tds = 2sds

b Vb
f Vtf(t)dt =f sf(s?)2sds
0 0

f was smooth, so the integrand here is now C®

Simpson rule, trapezoidal rule ... for quadrature

| Example 7.4.3 (Simple composite polynomial quadrature rules)

Composite trapezoidal rule, cf. (7.2.5)

25

b
f f(Hdt = Y(xy — x0)f(a)+ (7.4.4)

m—1 15
j=1 '
%(x,,., —xm-1)f(b) . a5

Fig, 27T

1 o 1 2 3 a 5 é
> arising from piecewise linear interpolation of f.

Composite Simpson rule, cf. (7.2.6)

E

L(x1 — x0)f(a)+ (7.45) 7
m—1 sk

Y Hxje1 — xjo0) f(x))+

j=1 13

Q%(xf—x; Df G (xj+x-1))+
J_

3 (xm — xm1)f() -
> related to piecewise quadratic Lagrangian interpolation.

Iterative methods
Spiralish -> limit is convergence
Only works locally

o~ D e __
e -
N
lllustration of local convergence = 'b... *
/ \ .
(Only initial guesses “sufficiently close” to x* guaran- ) . /f"\.
x* 7
tee convergence.) . V, ® o u
Unfortunately, the neighborhood U is rarely knowna | A
priori. It may also be very small. ¢

Definition 8.1.9. Linear convergence

A sequence x) k = 0,1,2,. .., in R" converges linearly to x* € IR",

L < 1: “x{k'” —x*

<t

Yk € Ny .

The next step converges as fast as the current step, duh.
Detecting order of convergence
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Remark 8.1.19 (Detecting order of convergence)

How to guess the order of convergence {— Def. 8.1.17) from tabulated error norms measured in a numer-
ical experiment?

Abbreviate ¢ : “xm_fl

(norm of iteration errar):

logeg,q —logeg

assume €y q = C‘eiJ = logeg, 1 = logC + ploge; log ey — 108 &1

> monitor the quotients (log ey.1 — log e}/ (logeg — log e, 1) over several steps of the iteration.

Assumption: Ey4q = C - E} = log(Ej41) = log(C) + log(EL, ;)

=log(C) +p - log(E%, )
Subtract two such error equations => get p.

Recap Interpolations: B 9: Overview

Given: mesh points (f;, ;) € R%,i=0,...,n, o<ty < -+ < Iy =

Goal:  build function f € C!([to, t,]) satisfying the interpolation conditions f(t;) = y;,i = 0,...,1.

Definition 5.4.1. Cubic Hermite polynomial interpolant

Given data points (f}, ;) € R xR, j = 0,..., n, with pairwise distinct ordered nodes ;, and slopes
¢; € IR, the piecewise cubic Hermite interpolant s : [ty t,,] — R is defined by the requirements

5[3.-_1;,]'5?')3: i=1...,n , Sih_‘l_\lﬁ . s’i’!;]—q , 1=0,...,n.

splines
derivative of the left side should be the same as on the right side (continuous).

S[xi'xi+1] = S[xi+1'xi+2]

Data fitting
find f(x) such that the difference between y; and f(xl-) is minimal
Usually when you have more data points than unknowns in your function.
=>solve min )}, ||yi - f(xi)|| with least squares

Termination

k—so00

Lk 1
Hx. x{k}H < LH,‘{m: xm” ) (8.2.21)

Set! =0in i8.2.21! Setl =k—1in =8.2.21)

a priori termination criterion a posteriori termination criterion

o - x[k)" <3 L L”xf’fl —xlk ‘)” (8.2.23)

x* — x'[k}H < %llxm . xm)" (8.2.22) ‘

Contractive Fixed point iteration
Definition 8.2.6. Contractive mapping

@ : U C R" + R"is contractive (w.r.t. norm ||-|| on R™), if

AL <1 |@(x) —@(y)l| < Llx—yl Yxyel. (8:27)
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Theorem 8.2.9. Banach'’s fixed point theorem
IfD c K" (K = R,C) closed and bounded and & : D+ [ satisfies
I <1: [ox)-o(y)| <Llx—y| VxyeD,

then there is a unique fixed pointx* € D, ®(x*) = x*, which is the limit of the sequence of iterates
xK+1) ;= @(x®) for any x(©) € D.

Lemma 8.2.10. Sufficient condition for local linear convergence of fixed point iteration
[5, Thm. 17.2], [3, Cor. 5.12]

If®: U C R" — R", ®(x*) = x*, & differentiable in x*, and |D ®(x*)|| < 1, then the fixed point
iteration
x®&t1) .= p(x®)) , (8.2.2)
converges locally and at least linearly. matrix norm, Def. 1.5.76 !

Multipoint methods Model function M
Newton's method detailed expl.

Derivative of Matrix inversion

Application: Derivative of matrix inversion
Tool: Product rule for general derivatives
* Vector spaces: V, W, U, Z
* BV = W,G:V — Udifferentiable mappings
* b: W x U — Z bilinear (linear in each argument)
» T(x):=b(F(x),6(x)), T:V - Z i
V=Ww=U=Z=R, ( bEnN=¢-n
T(x) = F(x) - G(x), xeR
=T (x)=F'(x)-Gx)+F(x)-6G'(x) eR
T'(x)h=F'(x)h-G(x) + F(x) - (G'(x)h

& For b : V» Wlinear, we have D F(x) = I for all x

e Product rule: F: D C Vo W, C
linear in each arguent:

cDCVy }Uﬁﬁuysmmtw w U 3 Z bilined, ie.,

Tix)h = b(D F(x}h, +B(F(x),DG(x)h), (8.4.9)
heV.xe D},
___-‘-'-'---__

T(x) = b(F(x),G(x)) =

Dinv(X)H = —X"'HX ', He€eR™

Termination: Newton's method detailed exp
Damping
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@& Newton correction is too large:

F(x) = arctan(ax) , a>0,x € R

withzero x* = 0.

If x(5) is located where the function is “flat”, the in-
tersection of the tangents with the x-axis is “far out”,
see Fig. 299.

Fig. 288

Diverging Newton iteration for F(x) = arctan x
T T T T

0.5k

15 1 1 | L
Fig. 299 6 -4 3 i) 2 4

8 Fig. 300

Solution approach: "damping". That means decreasing the size of the shift

Idea: damping of Newton cor&iction:
with A® > 0: x® D .= x® _A® pr(x0)-Tp®0) . (8.4.47)

Terminology: A} = damping factor

Ais between 0 and 1

The art is to find a good damping factor

This is weird and maybe heuristics but it works amazingly if newton is lost
otherwise with the Affine invariant damping strategy

| Affine invariant damping strategy

Choice of damping factor: affine invariant natural monotonicity test [?, Ch. 3]:
k K Ak k
choose “maximal” 0 < A®) < 1: ”Ai(/\( >)|| < (= T)||Ax( >||2 (8.4.49)

Ax®) = p F(x®)-1F(x®) — current Newton correction ,
where
AX(A®) := DF(x®)TF(x® 4 A®Ax®)) 5 tentative simplified Newton correction .

If we correct, then next time it should be a bit smaller. This is what we should get if
guadratic convergence had already set in

"Theory/assumption": If quadratic convergence => ||A x(A = 1)|| < % ||Ax(k)||
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If naturalMonotonicityTest passed, reduce damping aka increase lambda
if failed, increase damping (usually by factor of 2)
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Fun Fact Summenformel

Mittwoch, 21. Dezember 2016 09:20

(unnétig aber yey)

geometrische Summenformel
~ Beweis (Geometrische Summenformel)

Esist
Y onigd® =14+q+@+...+q"
| beide Seiten mit ¢ multiplizieren
= ¢ 2red =q+@+¢+...+q!

| zweite von erster Gleichung subtrahieren

= Yhod-a¢Xiod

| Yi., ¢" ausklammern

n+1

= (1—‘1)'22—()‘1"

1-g¢

' 1-g"*
= Yiod ==
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