Endterm Zusammenfassung

Dienstag, 20. Dezember 2016 21:54

Convolutions

y; = H.row(i) * X = nennt sich discrete Convolution= Z?zeéght(m xihj_y
n-periodic: height =n

Nonperiodic: height = 2n (attention: indexing from 0 to 2n-1)

Fourier

—2mi
Def. Root unity: w, == e n = cos (27”) —isin (an)

These are equally spaced in the complex plane in a circle around (0,0)

wr =1,
2mi —_
w;! = e =T = complex conjugate = w),
] 1
vectors vy, defined as [(on] :
j=n
C'I]k = (A)fl]

Fourier Matrix contains the Eigenvectors AND the Eigenvalues of any Circulant Matrix
The matrix effecting the change of basis trigonometrical basis — standard basis is called the Fourier-

matrix
0 }
Wy - n

0
n
E "‘»"321 -2 -1
F, = |¥n wﬁ/ e Wy = [wi,}],. LEC. (4.2.13)
: : E : > A=
2
wg wh cen wf,"_n

Lemma 4.2.14. Properties of Fourier matrix

The scaled Fourier-matrix ;}EF" is unitary (— Def. 6.2.2) : F,' = JF}l' = 1F,.

Lemma 4.2.16. Diagonalization of circulant matrices (— Def. 4.1.34)

For any circulant matrix C € IK"", ¢;; = u;_;, (uy ez n-periodic sequence, holds true
CF, = F,diag(dy,...,ds) , d=Fy[ig - stnsy .
Ug
Up-1

Cx = Fydiag(dy,..,dy)F,”'x = nF; diag - (nFn‘l)_lx = E;'diag - F, x

This is a periodic discrete convolution.

Num Seite 1

. porrlic . &= mothplaalion w/ arlant matix

Conclusion (fromF,, = nF,j‘): [C= F,j' diag(dy,...,dn)Fy |. (4.2.17)
d { == F‘; M

C++11 code 4.2.25: Discrete periodic convolution: DFT implementation =» GITLAB

: |VectorXcd pconvfft (const VectorXcd& u, const VectorXcd& x) {
Eigen ::FFT<double> fft;

VectorXcd tmp = (fft.fwd(u)).cwiseProduct(fft.fwd(x)).
return fft.inv(imp);

A7y A 575

. & w

¢ |}

Zero Padding
We now have a function that takes u and x as argument and performs a convolution y =
Cw) -x=F-(FRi)-F-x
In the beginning we had a H-Matrix (Filter) which is always circulant so this works always.
If we don't have periodicity, we can pad with zeros to remove interference:

U has size n

C(u) has size n X n for n — periodicity

padu’ — size 2n —1

= C(u') has size 2n — 1) X (2n — 1) = no interference

x has to fit the second dimension of C = x has size (2n — 1)

Frequencies

kL 2\ [[2rki\]"
vk=[n = |cos —i|sin[——
j=0 n /i, n /i,
— i(-%)) . o
umformung der Definition w, = e\ n/ =>frequenzen filtern: indem man die Mittleren

Zeilen von E, X auf Null setzt erhilt man die hohen frequenzen. (Mittig, weil es nacher
wieder langsamer wird, einfach mit richtungswechsel. Stichwort Stroboskop.)

Frequency identification
Some measurement with noise that might be repetitive => apply DFT => probably these
frequencies that have a high number in the transformed Vector.

DFTin 2D
Same, but twice
Basis of 2D: because F is basis in 1D

wim-1 kp n T
Vipn = 1|05 ([60])
mmn [mli—o " k=0 v=0,..,m—

To calculate this, we usually don't do it with Matrix multiplication but with first row-wise
and then column-wise FFT because this is in O(n log(n)) solvable. This is mathematically
the same as multiplying with F on both sides (C = E, YF,). Think about it row-wise with F
symmetric = rows and columns are same in F.
given Matrix Y. for all rows of Y:
tempMatrix.row(k) = fft.fwd(Y.row(k)).transpose();
then apply FFT again for all columns of this tempMatrix:

Num Seite 2

C.col(k) = fft.fwd(tempMatrix.col(k));

Deblurring
Blurring Operator B is given as pixelwise

Blurring = pixel values get replaced by weighted averages of near-by pixel values
(effect of distortion in optical transmission systems)
L L 0<l<m, .
= E Z SkaPlkjtq ¢) Le{l min{m,n}}.

\ Pt Pt} \ 0<j<n, —~-Vr

blurred image point spread function

(4.2.57)

The solution for deblurring is to switch to Fourier space, divide cwise by s and then

switch back. That works because of tricks - view Endterm Recap.
Estimating point spread function

Eshmaﬁng, PSF S,(A
P, = st }maarw =7 =
C. 2 blund (‘magw ¢

[S T := armp 7 I Bl 1P)-G 12
K4 [kfcq] Z L= r‘kﬁ]

also Unterschied zwischen blurred und Blur(real) image minimieren.

Fast Fourier Transform

Divide Sums into a sum for the even and a sum for the odd indizes of the given Vector
Recursion => O(n log(n))

forsize of y called n = 2m:

o = Z I)I; Zm

=0
™ N -k — 2 (24+1)k
)= = Z Yoje T A+ Z Y2jp1€ "
_ 2?1! 2_ 2_;1;' .
— Z yz} m n Z y2k+l‘~’ [

(ka jk

Toeplitz Multiplication with a Vector

constant diagonals => m+n-1 actual information content numbers = Toeplitz matrix can
be displayed with a vector u = (U_pm41,) Un_1)

Extend to Circulant matrix of size 2m x 2n

Num Seite 3

onenote:#Endterm%20Recap§ion-id={7CDE5F51-186D-4724-85A6-1106D9612EEA}&page-id={B736DDF4-ABB8-45DA-9167-7A47D615C9A8}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/Num.one

—eeep e m e m e m

The following formula demaonstrates t

ceimp memee e

s g e

he structur

eof €in the case m = n.
[up 1y Uy 0wy U_q |

U_q ug | up 1 O :
11 Ul—n

Uy u iy iy Uy {0

C:

0 g w1 up e Upq

tp1 |0 g g W :

: H1_p : H

Uy iy 1 0 T u Uy

0
This is like a convolution, so we can solve this using FFT.
Solving Least Squares for minimizing Filter error
can be solved like this, because Normal equation contains AT A, which is a Toeplitz Matrix
when A circulant. = AT Ah = y to minimize the error = fast.
Interpolation in 1D
Piecewise Linear Interpolation
Connect measured points by lines.

for Formax = b: a = slope = Xt%’l_-l
i—li-1

adding up tent functions: they have to be not influencing any other points
and add up to a line in between points.

Now instead of Tx, we can calculate C (x) = (Tx)
idgaf

, b = where line cuts y

bl')'

height 1 because they can be scaled using coefficients
Interpolation as linear Mapping
BaseFunctions * Coef ficients = measurements

Yo
: Yo
n

=>need m = n = Anzahl measurements = Anzahl base vectors
Polynomial Interpolation
Horner Scheme: Instead of calculating a polynomial p(t) by calculating all powers
of t, you can calculate it recursively

pt) = t(--- t(t(@nt + oy 1) + & _2) + -+~ +a1) +ag .
=> lineare zeit
Lagrange Polynomials as Cardinal Basis

bo(fo) bm(to) | | co
Ac: : : :
bo(tn) b(tn) | | €m

(5.2.6,

Num Seite 4

Fornodes 1ty < t; < --- < t, (— Lagrange interpolation) consider the

t—t;
L i=o0,...,n. (5.2.11)
ti — 1

n

Lagrange polynomials Li(t) := Il
1]

;'/r

-> Evidently, the Lagrange polynomials satisfy L; € Py and | Li(;) = Jij

and based on that Basis the Lagrange interpoland p(t) = X, y;L;(t) which is just
the sum of all Lagrange polynomials. It fulfills p(tl-) =y;.
fast by precomputing part of L;

L n " t_ t}. n n " n A,!'
pt) =) L vi=Y Il vi=LAlIC-t)vi=T10-4) - =7 vi-
i—0 imoj0fi Tk im0 g0 j—0 it =t
j#i j#i
1

where A

— L i=0,...,n
(i —to) - (b — bi1) (b —tis1) (b —ta) "
=> precompute Lambda and sum or product
Laufzeit: without precomputing: Sum n, product n, evaluating all t; N => O(an)
with precomputing: O (nN)

From above formula, with p(f) =1, y; = 1:

n n A n 1
1=]]t~¢) Zﬁ > H(r b= o i
j=0 i=0 f j=0 Lr‘ 0 I—f;
n
Etift- 4
(= Barycentric interpolation formula p(t) ="* ',]r A: . (5.2.28)
)3 t—t

i=0

this works because we know that p has to be 1 where 1is 1

partial Lagrange interpolant
Aitken-Neville scheme: k < l. Good for single evaluation
Pr,1
= unique polynomial of degree (l
— k) through the known points (t, y)k (t, y)l
First, set polynomials through just the k-th point:
Piek (X) = Vi
From these, derive interpolating polynomials through more points:

1
Pra(x) = r— ((X — ti)Pres1,1(X) — (x = tl)pk,l—l(x))

so we weigh the polynomial in the interval to the right based on how much
to the right x is, and the left polynomial based on how much to the left x is.
(Assuming t, < x < t;, this will result in an addition. If x is not in the
interval, then what?)
Dividing the whole thing to rescale it back to normal

Extrapolation to zero

same as interpolation but with x outside the interval.

Lagrangian

works well if function is even: ¢(t) = ¢p(—t) and ¢ behaves nicely around h

Given: smooth function f in procedural form

Sought: approximation of f’

(unfinished. view Endterm Recap)

Num Seite 5

onenote:#Endterm%20Recap§ion-id={7CDE5F51-186D-4724-85A6-1106D9612EEA}&page-id={B736DDF4-ABB8-45DA-9167-7A47D615C9A8}&end&base-path=https://d.docs.live.net/8f5ab95c65c33049/Dokumente/Jahr2%2016_17/Num.one

