Endterm Zusammenfassung

Convolutions

$y_{i}=H \cdot \operatorname{row}(i) * \vec{x}=$ nennt sich discrete Convolution $=\sum_{l=0}^{\operatorname{height}(H)} x_{l} h_{j-l}$ n -periodic: height $=\mathrm{n}$
Nonperiodic: height $=2 n$ (attention: indexing from 0 to $2 n-1$)

Fourier

Def. Root unity: $\omega_{n}:=e^{\frac{-2 \pi i}{n}}=\cos \left(\frac{2 \pi}{n}\right)-i \sin \left(\frac{2 \pi}{n}\right)$
These are equally spaced in the complex plane in a circle around $(0,0)$ $\omega_{n}^{n}=1$,

$$
\boldsymbol{\omega}_{n}^{-l}=e^{\frac{2 \pi i}{-l}}=\text { complex conjugate }=\overline{\omega_{n}^{l}}
$$

vectors v_{k} defined as $\left[\omega_{n}^{j k}\right]_{j=n}^{n-1}$
$C v_{k}=\omega_{n}^{k j} \sum_{l=0}^{n-1} u_{l} \omega_{n}^{-k l}$
$\Rightarrow \omega_{n}^{k j}=\left(v_{k}\right)_{j}=\lambda_{k}=$ Eigenwert von C and v_{k} is it's eigenvector
Fourier Matrix contains the Eigenvectors AND the Eigenvalues of any Circulant Matrix The matrix effecting the change of basis trigonometrical basis \rightarrow standard basis is called the Fouriermatrix

$$
\mathbf{F}_{n}=\left[\begin{array}{cccc}
\omega_{0}^{0} & \overrightarrow{\omega_{n}^{0}} & \cdots & \omega_{n}^{\gtrless} \tag{4.2.13}\\
\phi_{n}^{\gtrless} & \omega_{n}^{1} & \cdots & \omega_{n}^{n} \\
\phi_{n}^{0} & \omega_{n}^{2} & \cdots & \omega_{n}^{2 n-2} \\
\vdots & \vdots & & \vdots \\
\omega_{n}^{0} & \omega_{n}^{n} \downarrow & \cdots & \omega_{n}^{(n-1)^{2}}
\end{array}\right]=\left[\omega_{n}^{i n}\right]_{l, j=0}^{n-1} \in \mathbf{C}^{n, n} .
$$

Lemma 4.2.14. Properties of Fourier matrix

The scaled Fourier-matrix $\frac{1}{\sqrt{n}} \mathrm{~F}_{n}$ is unitary $\left(\rightarrow\right.$ Def. 6.2.2) : $\quad \mathrm{F}_{n}^{-1}=\frac{1}{n} \mathrm{~F}_{n}^{\mathrm{H}}=\frac{1}{n} \overline{\mathrm{~F}}_{n}$.

Lemma 4.2.16. Diagonalization of circulant matrices (\rightarrow Def. 4.1.34)

For any circulant matrix $\mathbf{C} \in \mathbb{K}^{n, n}, c_{i j}=u_{i-j},\left(u_{k}\right)_{k \in \mathbf{Z}} n$-periodic sequence, holds true

$$
\mathbf{C} \overline{\mathbf{F}}_{n}=\overline{\mathbf{F}}_{n} \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \quad, \quad \mathbf{d}=\mathbf{F}_{n}\left[u_{0}, \ldots, u_{n-1}\right]^{\top}
$$

$\Rightarrow d=F_{n}\left(\begin{array}{c}u_{0} \\ \ldots \\ u_{n-1}\end{array}\right)$
$C x=\bar{F}_{n} \operatorname{diag}\left(d_{1}, . ., d_{n}\right) \bar{F}_{n}^{-1} x=n F_{n}^{-1} \operatorname{diag} \cdot\left(n F_{n}^{-1}\right)^{-1} x=F_{n}^{-1} \operatorname{diag} \cdot F_{n} x$
This is a periodic discrete convolution.

$C=\operatorname{aizul}(s), \quad d:=F_{n} \mu$

C++11 code 4.2.25: Discrete periodic convolution: DFT implementation \Rightarrow GITLAB
VectorXcd pconvfft(const VectorXcd\& u, cost Vector)(cd\& x) \{ Elgen::FFT<double> fit; VectorXcd mp $=(\mathbf{f f t} . f w d(u))$.cwiseProduct ($\mathbf{f f t} . f w d(x))$; return fft.inv(tmp);
\}

Zero Padding

We now have a function that takes u and x as argument and performs a convolution $y=$ $C(u) \cdot x=\overline{F_{n}} \cdot\left(F_{n} \vec{u}\right) \cdot F_{n} \cdot x$
In the beginning we had a H-Matrix (Filter) which is always circulant so this works always. If we don't have periodicity, we can pad with zeros to remove interference:
\vec{u} has size n
$C(u)$ has size $n \times n$ for $n-$ periodicity
pad $u^{\prime} \rightarrow$ size $2 n-1$
$\Rightarrow C\left(u^{\prime}\right)$ has size $(2 n-1) \times(2 n-1) \Rightarrow$ no interference
x has to fit the second dimension of $C \Rightarrow x$ has size $(2 n-1)$

Frequencies

$v_{k}=\left[\omega_{n}^{k j}\right]_{j=0}^{n-1}=\left[\cos \left(\frac{2 \pi k j}{n}\right)\right]_{j=0}^{n-1}-i\left[\sin \left(\frac{2 \pi k j}{n}\right)\right]_{j=0}^{n-1}$
umformung der Definition $\omega_{n}=e^{i\left(-\frac{2 \pi}{n}\right)} \Rightarrow>$ frequenzen filters: indem man die Mittleren Zeilen vo $F_{n} \vec{x}$ auf Null setzt erhält man die hohen frequenzen. (Mittig, wail es nacher weeder langsamer wird, einfach mit richtungswechsel. Stichwort Stroboskop.)

Frequency identification

Some measurement with noise that might be repetitive => apply DFT => probably these frequencies that have a high number in the transformed Vector.

DFT in 2D

Same, but twice
Basis of 2D: because F is basis in 1D
$V_{m, n}=\left\{\left[\omega_{m}^{l v}\right]_{l=0}^{m-1}\left(\left[\omega_{n}^{k p}\right]_{k=0}^{n}\right)^{T}\right\}_{\substack{v=0, \ldots, m-1 \\ p=0, \ldots, n-1}}$
DFT of $Y: C=F_{m} Y F_{n}$
Inverse: $Y=F_{m}^{-1} C F_{n}^{-1}=\frac{1}{m n} \overline{F_{m}} C \overline{F_{n}}$
//because scaled F is unitary. Remember: $\frac{1}{n} \bar{F}_{n}=F_{n}^{-1}$
C-wise DFT of Y: $(C)_{l, k}=\sum_{v=0}^{m-1} \sum_{\mu=0}^{n-1}(y)_{v, \mu} \omega_{m}^{l v} \omega_{n}^{\mu k}$
To calculate this, we usually don't do it with Matrix multiplication but with first row-wise and then column-wise FFT because this is in $O(n \log (n))$ solvable. This is mathematically the same as multiplying with F on both sides $\left(C=F_{m} Y F_{n}\right)$. Think about it row-wise with F symmetric \Rightarrow rows and columns are same in F.
given Matrix Y. for all rows of Y :
tempMatrix.row(k) = fft.fwd(Y.row(k)).transpose();
then apply FFT again for all columns of this tempMatrix:

Deblurring

Blurring Operator B is given as pixelwise
Blurring = pixel values get replaced by weighted averages of near-by pixel values (effect of distortion in optical transmission systems)

$$
c_{l, j}=\sum_{k=-L}^{L} \sum_{q=-L}^{L} s_{k, q} p_{l+k, j+q}, \quad \begin{align*}
& 0 \leq l<m, \quad L \in\{1, \ldots, \min \{m, n\}\} . \tag{4.2.57}\\
& 0 \leq j<n,
\end{align*}
$$

blurred image point spread function
The solution for deblurring is to switch to Fourier space, divide wise by s and then switch back. That works because of tricks - view Endterm Recap.

Estimating point spread function

$P_{i} \xlongequal{\cong}$ test images $i=1, \ldots, m$
$\left[S_{k, 9}\right]:=\underset{\left[r_{k, q}\right]}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|B\left(\left[r_{k, 9}\right]_{i} P_{i}\right)-C_{i}\right\|_{F}^{2}$
also Unterschied zwischen blurred und Blur(real) image minimieren.

Fast Fourier Transform

Divide Sums into a sum for the even and a sum for the odd indizes of the given Vector.
Recursion $=>O(n \log (n))$
for size of y called $n=2 m$:

$$
c_{k}=\sum_{j=0}^{n-1} y_{j} e^{-\frac{2 \pi i}{n} j k}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{m-1} y_{2 j} e^{-\frac{2 \pi i}{n} 2 j k}+\sum_{j=0}^{m-1} y_{2 j+1} e^{-\frac{2 \pi i}{n}(2 j+1) k} \\
& =\sum_{j=0}^{m-1} y_{2 j} \underbrace{e^{-\frac{2 \pi i}{m} j k}}_{=\omega_{m}^{j k}}+e^{-\frac{2 \pi i}{n} k} \cdot \sum_{j=0}^{m-1} y_{2 k+1} \underbrace{e^{-\frac{2 \pi i j k}{m} j}}_{=\omega_{m}^{j k}} .
\end{aligned}
$$

Toeplitz Multiplication with a Vector

constant diagonals $=>m+n-1$ actual information content numbers \Rightarrow Toeplitz matrix can be displayed with a vector $u=\left(u_{-m+1}, \ldots, u_{n-1}\right)$
Extend to Circulant matrix of size $2 m \times 2 n$

The following formula demonstrates the structure of C in the case $m=n$.

$$
\mathbf{C}=\left[\begin{array}{ccccccc|cccccc}
u_{0} & u_{1} & \cdots & & \cdots & u_{n-1} & 0 & u_{1-n} & \cdots & & \cdots & u_{-1} \\
u_{-1} & u_{0} & u_{1} & & & \vdots & u_{n-1} & 0 & \ddots & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & & \vdots & \vdots & \ddots & \ddots & & & \\
\vdots & & \ddots & \ddots & \ddots & \vdots & & & & & \ddots & \\
\vdots & & & \ddots & \ddots & u_{1} & \vdots & & & \ddots & \ddots & u_{1-n} \\
u_{1-n} & \cdots & & \cdots & u_{-1} & u_{0} & u_{1} & & & & u_{n-1} & 0 \\
\hline 0 & v_{1-n} & \cdots & & \cdots & u_{-1} & u_{0} & u_{1} & \cdots & & \cdots & u_{n-1} \\
u_{n-1} & 0 & \ddots & & & \vdots & u_{-1} & u_{0} & u_{1} & & & \vdots \\
\vdots & \ddots & \ddots & & & & \vdots & \ddots & \ddots & \ddots & & \vdots \\
& & & & \ddots & & \vdots & & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & \ddots & \ddots & u_{1-n} & \vdots & & & \ddots & \ddots & u_{1} \\
u_{1}
\end{array}\right.
$$

Now instead of $T x$, we can calculate $C\binom{\vec{x}}{0}=\binom{T x}{$ idgaf }
This is like a convolution, so we can solve this using FFT.
Solving Least Squares for minimizing Filter error
can be solved like this, because Normal equation contains $A^{T} A$, which is a Toeplitz Matrix when A circulant. $\Rightarrow A^{T} A h=y$ to minimize the error \Rightarrow fast.

Interpolation in 1D

Piecewise Linear Interpolation
Connect measured points by lines.
for Form $a x=b: \quad a=$ slope $=\frac{y_{i}-y_{i-1}}{t_{i}-t_{i-1}}, \quad b=$ where line cuts y adding up tent functions: they have to be not influencing any other points and add up to a line in between points.

height 1 because they can be scaled using coefficients
Interpolation as linear Mapping
BaseFunctions $*$ Coefficients $=$ measurements

$$
\mathbf{A c}:=\left[\begin{array}{ccc}
b_{0}\left(t_{0}\right) & \ldots & b_{m}\left(t_{0}\right) \\
\vdots & & \vdots \\
b_{0}\left(t_{n}\right) & \ldots & b_{m}\left(t_{n}\right)
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
\vdots \\
c_{m}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
\vdots \\
y_{n}
\end{array}\right]=: \mathbf{y} .
$$

\Rightarrow need $m=n \Rightarrow$ Anzahl measurements $=$ Anzahl base vectors
Polynomial Interpolation
Horner Scheme: Instead of calculating a polynomial $p(t)$ by calculating all powers of t, you can calculate it recursively

$$
p(t)=t\left(\cdots t\left(t\left(\alpha_{n} t+\alpha_{n-1}\right)+\alpha_{n-2}\right)+\cdots+\alpha_{1}\right)+\alpha_{0}
$$

=> lineare zeit
Lagrange Polynomials as Cardinal Basis

For nodes $t_{0}<t_{1}<\cdots<t_{n}$ (\rightarrow Lagrange interpolation) consider the

$$
\begin{equation*}
\text { Lagrange polynomials } \quad L_{i}(t):=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{t-t_{j}}{t_{i}-t_{j}}, i=0, \ldots, n . \tag{5.2.11}
\end{equation*}
$$

$\rightarrow \quad$ Evidently, the Lagrange polynomials satisfy $L_{i} \in \mathcal{P}_{n}$ and $L_{i}\left(t_{j}\right)=\delta_{i j}$
and based on that Basis the Lagrange interpoland $p(t)=\sum_{i=0}^{n} y_{i} L_{i}(t)$ which is just the sum of all Lagrange polynomials. It fulfills $p\left(t_{i}\right)=y_{i}$.
fast by precomputing part of $\boldsymbol{L}_{\boldsymbol{i}}$

$$
\begin{aligned}
& \quad p(t)=\sum_{i=0}^{n} L_{i}(t) y_{i}=\sum_{i=0}^{n} \prod_{\substack{j=0 \\
j \neq i}}^{n} \frac{t-t_{j}}{t_{i}-t_{j}} y_{i}=\sum_{i=0}^{n} \lambda_{i} \prod_{\substack{j=0 \\
j \neq i}}^{n}\left(t-t_{j}\right) y_{i}=\prod_{j=0}^{n}\left(t-t_{j}\right) \cdot \sum_{i=0}^{n} \frac{\lambda_{i}}{t-t_{i}} y_{i} . \\
& \text { where } \quad \lambda_{i}=\frac{1}{\left(t_{i}-t_{0}\right) \cdots\left(t_{i}-t_{i-1}\right)\left(t_{i}-t_{i+1}\right) \cdots\left(t_{i}-t_{n}\right)}, i=0, \ldots, n .
\end{aligned}
$$

$=>$ precompute Lambda and sum or product
Laufzeit: without precomputing: Sum n, product n, evaluating all $t_{s} \mathrm{~N}=>O\left(N n^{2}\right)$
with precomputing: $O(n N)$
From above formula, with $p(t) \equiv 1, y_{i}=1$:

$$
\begin{array}{r}
1=\prod_{j=0}^{n}\left(t-t_{j}\right) \sum_{i=0}^{n} \frac{\lambda_{i}}{t-t_{i}} \Rightarrow \prod_{j=0}^{n}\left(t-t_{j}\right)=\frac{1}{\sum_{i=0}^{n} \frac{\lambda_{i}}{t-t_{i}}} \\
\quad \text { Barycentric interpolation formula } \quad p(t)=\frac{\sum_{i=0}^{n} \frac{\lambda_{i}}{t-t_{i}} y_{i}}{\sum_{i=0}^{n} \frac{\lambda_{i}}{t-t_{i}}} . \tag{5.2.28}
\end{array}
$$

this works because we know that p has to be 1 where 1 is 1

partial Lagrange interpolant

Aitken-Neville scheme: $k<l$. Good for single evaluation
$p_{k, l}$
$=$ unique polynomial of degree $(l$
$-k)$ through the known points $(t, y)_{k} \ldots(t, y)_{l}$
First, set polynomials through just the k-th point:

$$
p_{k, k}(x)=y_{k}
$$

From these, derive interpolating polynomials through more points:
$p_{k, l}(x)=\frac{1}{t_{l}-t_{k}}\left(\left(x-t_{k}\right) p_{k+1, l}(x)-\left(x-t_{l}\right) p_{k, l-1}(x)\right)$
so we weigh the polynomial in the interval to the right based on how much to the right x is, and the left polynomial based on how much to the left x is. (Assuming $t_{k}<x<t_{l}$, this will result in an addition. If x is not in the interval, then what?)
Dividing the whole thing to rescale it back to normal

Extrapolation to zero

same as interpolation but with x outside the interval.
Lagrangian
works well if function is even: $\phi(t)=\phi(-t)$ and ϕ behaves nicely around h
Given: smooth function f in procedural form
Sought: approximation of f^{\prime}
(unfinished. view Endterm Recap)

