Endterm Zusammenfassung

Dienstag, 20. Dezember 2016 21:54

Convolutions

 $y_i = H.row(i) * \vec{x} = \text{nennt sich discrete Convolution} = \sum_{l=0}^{height(H)} x_l h_{j-l}$ n-periodic: height = n Nonperiodic: height = 2n (attention: indexing from 0 to 2n-1)

Fourier

Def. Root unity: $\omega_n \coloneqq e^{\frac{-2\pi i}{n}} = \cos\left(\frac{2\pi}{n}\right) - isin\left(\frac{2\pi}{n}\right)$ These are equally spaced in the complex plane in a circle around (0,0) $\omega_n^n = 1$, $\omega_n^{-l} = e^{\frac{2\pi i}{l}} = complex \ conjugate = \overline{\omega_n^l}$ vectors v_k defined as $\left[\frac{\omega_n^{jk}}{n}\right]_{j=n}^{n-1}$ $Cv_k = \frac{\omega_n^{kj} \sum_{l=0}^{n-1} u_l \omega_n^{-kl}}{\omega_n^{kl}}$ $\Rightarrow \omega_n^{kj} = (v_k)_j = \lambda_k = Eigenwert \ von \ C \ and \ v_k \ is \ it's \ eigenvector$

Fourier Matrix contains the Eigenvectors AND the Eigenvalues of any Circulant Matrix The matrix effecting the change of basis trigonometrical basis \rightarrow standard basis is called the Fouriermatrix

$$\mathbf{F}_{n} = \begin{bmatrix} \omega_{n}^{0} & \overline{\omega_{n}^{0}} & \cdots & \overline{\omega_{n}^{0}} \\ \omega_{n}^{0} & \omega_{n}^{1} & \cdots & \overline{\omega_{n}^{n-1}} \\ \omega_{n}^{0} & \omega_{n}^{2} & \cdots & \overline{\omega_{n}^{2n-2}} \\ \vdots & \vdots & \vdots \\ \omega_{n}^{0} & \omega_{n}^{n} & \cdots & \omega_{n}^{(n-1)^{2}} \end{bmatrix} = \begin{bmatrix} \omega_{n}^{lj} \end{bmatrix}_{l,j=0}^{n-1} \in \mathbb{C}^{n,n} .$$
(4.2.13)

Lemma 4.2.14. Properties of Fourier matrix

The scaled Fourier-matrix $\frac{1}{\sqrt{n}}\mathbf{F}_n$ is unitary (\rightarrow Def. 6.2.2) : $\mathbf{F}_n^{-1} = \frac{1}{n}\mathbf{F}_n^{\mathrm{H}} = \frac{1}{n}\overline{\mathbf{F}}_n$.

Lemma 4.2.16. Diagonalization of circulant matrices (\rightarrow Def. 4.1.34)

For any circulant matrix $\mathbf{C} \in \mathbb{K}^{n,n}$, $c_{ij} = u_{i-j}$, $(u_k)_{k \in \mathbb{Z}}$ *n*-periodic sequence, holds true

$$\mathbf{C}\overline{\mathbf{F}}_n = \overline{\mathbf{F}}_n \operatorname{diag}(d_1,\ldots,d_n)$$
, $\mathbf{d} = \mathbf{F}_n[u_0,\ldots,u_{n-1}]^\top$.

$$\Rightarrow d = F_n \begin{pmatrix} u_0 \\ \cdots \\ u_{n-1} \end{pmatrix}$$

$$Cx = \overline{F_n} diag(d_1, \dots, d_n) \overline{F_n}^{-1} x = nF_n^{-1} diag \cdot (nF_n^{-1})^{-1} x = F_n^{-1} diag \cdot F_n x$$

This is a periodic discrete convolution.

Zero Padding

We now have a function that takes u and x as argument and performs a convolution $y = C(u) \cdot x = \overline{F_n} \cdot (F_n \vec{u}) \cdot F_n \cdot x$

In the beginning we had a H-Matrix (Filter) which is always circulant so this works always. If we don't have periodicity, we can pad with zeros to remove interference:

 \vec{u} has size n C(u) has size $n \times n$ for n - periodicitypad $u' \rightarrow size 2n - 1$ $\Rightarrow C(u')$ has size $(2n - 1) \times (2n - 1) \Rightarrow$ no interference x has to fit the second dimension of $C \Rightarrow x$ has size (2n - 1)

Frequencies

$$v_{k} = \left[\omega_{n}^{kj}\right]_{j=0}^{n-1} = \left[\cos\left(\frac{2\pi kj}{n}\right)\right]_{j=0}^{n-1} - i\left[\sin\left(\frac{2\pi kj}{n}\right)\right]_{j=0}^{n-1}$$

umformung der Definition $\omega_n = e^{i(-\frac{2n}{n})} \Rightarrow$ frequenzen filtern: indem man die Mittleren Zeilen von $F_n \vec{x}$ auf Null setzt erhält man die hohen frequenzen. (Mittig, weil es nacher wieder langsamer wird, einfach mit richtungswechsel. Stichwort Stroboskop.)

Frequency identification

Some measurement with noise that might be repetitive => apply DFT => probably these frequencies that have a high number in the transformed Vector.

DFT in 2D

$$V_{m,n} = \left\{ \left[\omega_m^{lv} \right]_{l=0}^{m-1} \left(\left[\omega_n^{kp} \right]_{k=0}^n \right)^T \right\}_{\substack{\nu=0,\dots,m-1\\n=0,\dots,n-1}}$$

DFT of Y:
$$C = F_m Y F_n$$

Inverse: $Y = F_m^{-1} C F_n^{-1} = \frac{1}{mn} \overline{F_m} C \overline{F_n}$
//because scaled F is unitary. Remember: $\frac{1}{n} \overline{F_n} = F_n^{-1}$
C-wise DFT of Y: $(C)_{l,k} = \sum_{\nu=0}^{m-1} \sum_{\mu=0}^{n-1} (y)_{\nu,\mu} \omega_n^{l\nu} \omega_n^{\mu k}$

To calculate this, we usually don't do it with Matrix multiplication but with first row-wise and then column-wise FFT because this is in $O(n \log(n))$ solvable. This is mathematically the same as multiplying with F on both sides ($C = F_m Y F_n$). Think about it row-wise with F symmetric \Rightarrow rows and columns are same in F.

given Matrix Y. for all rows of Y:

tempMatrix.row(k) = fft.fwd(Y.row(k)).transpose(); then apply FFT again for all columns of this tempMatrix:

Deblurring

Blurring Operator B is given as pixelwise

Blurring = pixel values get replaced by weighted averages of near-by pixel values

(effect of distortion in optical transmission systems)

$$c_{l,j} = \sum_{k=-L}^{L} \sum_{q=-L}^{L} s_{k,q} p_{l+k,j+q}, \quad \substack{0 \le l < m, \\ 0 \le j < n,} \quad L \in \{1, \dots, \min\{m, n\}\}.$$
(4.2.57)
blurred image point spread function

The solution for deblurring is to switch to Fourier space, divide cwise by s and then switch back. That works because of tricks - view Endterm Recap. Estimating point spread function

Estimating point spread function
Estimating PSF:
$$S_{k,q}$$

 $P_i \stackrel{=}{=} fest images$
 $C_i \stackrel{=}{=} bluned images$
 $[S_{k,q}] \stackrel{:=}{=} argmin \sum_{i=1}^{m} || B([r_{k,q}]_i P_i) - C_i ||_F^2$
 $[T_{k,q}]$

also Unterschied zwischen blurred und Blur(real) image minimieren.

Fast Fourier Transform

Divide Sums into a sum for the even and a sum for the odd indizes of the given Vector. Recursion => $O(n \log(n))$

for size of y called n = 2m:

$$c_{k} = \sum_{j=0}^{n-1} y_{j} e^{-\frac{2\pi i}{n} jk}$$

$$= \sum_{j=0}^{m-1} y_{2j} e^{-\frac{2\pi i}{n} 2jk} + \sum_{j=0}^{m-1} y_{2j+1} e^{-\frac{2\pi i}{n} (2j+1)k}$$

$$= \sum_{j=0}^{m-1} y_{2j} e^{-\frac{2\pi i}{m} jk} + e^{-\frac{2\pi i}{n} k} \cdot \sum_{j=0}^{m-1} y_{2k+1} e^{-\frac{2\pi i}{m} jk} \cdot \sum_{w=w_{m}^{j}}^{w}$$

Toeplitz Multiplication with a Vector

constant diagonals => m+n-1 actual information content numbers \Rightarrow Toeplitz matrix can be displayed with a vector $u = (u_{-m+1}, ..., u_{n-1})$ Extend to Circulant matrix of size 2m × 2n

 $\begin{pmatrix} Tx\\ idgaf \end{pmatrix}$ Now instead of $\frac{T}{T}x$, we can calculate $C\begin{pmatrix} \vec{x}\\ 0 \end{pmatrix}$

This is like a convolution, so we can solve this using FFT.

Solving Least Squares for minimizing Filter error

can be solved like this, because Normal equation contains $A^{T}A$, which is a Toeplitz Matrix when A circulant. $\Rightarrow A^T A h = y$ to minimize the error \Rightarrow fast.

Interpolation in 1D

Piecewise Linear Interpolation

Connect measured points by lines.

for Form ax = b: $a = slope = \frac{y_i - y_{i-1}}{t_i - t_{i-1}}$, b = where line cuts yadding up tent functions: they have to be not influencing any other points and add up to a line in between points.

height 1 because they can be scaled using coefficients Interpolation as linear Mapping *BaseFunctions* * *Coefficients* = *measurements*

$$\mathbf{Ac} := \begin{bmatrix} b_0(t_0) & \dots & b_m(t_0) \\ \vdots & & \vdots \\ b_0(t_n) & \dots & b_m(t_n) \end{bmatrix} \begin{bmatrix} c_0 \\ \vdots \\ c_m \end{bmatrix} = \begin{bmatrix} y_0 \\ \vdots \\ y_n \end{bmatrix} =: \mathbf{y}$$

 \Rightarrow need $m = n \Rightarrow$ Anzahl measurements = Anzahl base vectors **Polynomial Interpolation**

Horner Scheme: Instead of calculating a polynomial p(t) by calculating all powers of t, you can calculate it recursively

$$p(t) = t(\cdots t(t(\alpha_n t + \alpha_{n-1}) + \alpha_{n-2}) + \cdots + \alpha_1) + \alpha_0.$$
 (5.2.6)

=> lineare zeit

Lagrange Polynomials as Cardinal Basis

For nodes $t_0 < t_1 < \cdots < t_n$ (\rightarrow Lagrange interpolation) consider the

Lagra

ange polynomials
$$L_i(t) := \prod_{\substack{j=0 \ j \neq i}}^n \frac{t-t_j}{t_i-t_j}, \quad i = 0, \dots, n$$
. (5.2.1)

Evidently, the Lagrange polynomials satisfy $L_i \in \mathcal{P}_n$ and $L_i(t_j) = \delta_{ij}$

and based on that Basis the Lagrange interpoland $p(t) = \sum_{i=0}^{n} y_i L_i(t)$ which is just the sum of all Lagrange polynomials. It fulfills $p(t_i) = y_i$. fast by precomputing part of L_i

$$p(t) = \sum_{i=0}^{n} L_i(t) \ y_i = \sum_{i=0}^{n} \prod_{j=0}^{n} \frac{t-t_j}{t_i-t_j} \ y_i = \sum_{i=0}^{n} \lambda_i \prod_{j=0}^{n} (t-t_j) \ y_i = \prod_{j=0}^{n} (t-t_j) \ \cdot \sum_{i=0}^{n} \frac{\lambda_i}{t-t_i} \ y_i$$
where
$$\lambda_i = \frac{1}{(t_i-t_0)\cdots(t_i-t_{i-1})(t_i-t_{i+1})\cdots(t_i-t_n)}, \ i = 0, \dots, n.$$

$$\frac{1}{\cdots(t_i-t_{i-1})(t_i-t_{i+1})\cdots(t_i-t_n)}, i=0,\ldots,n.$$

=> precompute Lambda and sum or product

Laufzeit: without precomputing: Sum n, product n, evaluating all $t_s N \Rightarrow O(Nn^2)$ with precomputing: O(nN)

From above formula, with $p(t) \equiv 1$, $y_i = 1$:

$$1 = \prod_{j=0}^{n} (t - t_j) \sum_{i=0}^{n} \frac{\lambda_i}{t - t_i} \quad \Rightarrow \quad \prod_{j=0}^{n} (t - t_j) = \frac{1}{\sum_{i=0}^{n} \frac{\lambda_i}{t - t_i}}$$

Barycentric interpolation formula
$$p(t) = \frac{\sum_{i=0}^{n} \frac{\lambda_i}{t - t_i} y_i}{\sum_{i=0}^{n} \frac{\lambda_i}{t - t_i}}.$$
(5.2.28)

this works because we know that p has to be 1 where 1 is 1

partial Lagrange interpolant

<u>Aitken-Neville scheme</u>: k < l. Good for single evaluation

 $p_{k,l}$

= unique polynomial of degree (l

 $(t, y)_{k}$ - k) through the known points $(t, y)_{k}$... $(t, y)_{l}$

First, set polynomials through just the k-th point:

 $p_{k,k}(x) = y_k$

From these, derive interpolating polynomials through more points:

$$p_{k,l}(x) = \frac{1}{t_l - t_k} \left((x - t_k) p_{k+1,l}(x) - (x - t_l) p_{k,l-1}(x) \right)$$

so we weigh the polynomial in the interval to the right based on how much to the right x is, and the left polynomial based on how much to the left x is. (Assuming $t_k < x < t_l$, this will result in an addition. If x is not in the interval, then what?)

Dividing the whole thing to rescale it back to normal

Extrapolation to zero

same as interpolation but with x outside the interval. Lagrangian works well if function is even: $\phi(t) = \phi(-t)$ and ϕ behaves nicely around h Given: smooth function f in procedural form Sought: approximation of f'

(unfinished. view Endterm Recap)