Notes Final Version (shorter)

Freitag, 30. Juni 2017 10:46

Boundaries
Dirichlet specifies the values at the boundary.
Neumann specifies the derivatives at the boundary.
Periodic boundary conditions say Uy = Uy, U441 = U
Non-reflecting Neumann artificial boundary conditions: U} = U}*, Ug,1 = Uy
Partitioning

_ App  Aso|[Ho] _ |/o
An=fe [Aoa Aoo] [”O] - fo]
We already know L5 from the boundary condition, so we partition the matrix
= AgaMa + Aookto = fo
Agoko = fo —A(00) pa

Formulae
Gauss Theorem

fV-Fdx=f F-ndS
Q o0
F is a vector

vectorized Product rule

V()= (V- v+

where V - is the divergence and V by itself is the gradient

Divergence is the scalar product of the lying nabla vector and the other vector (added partial
products)

and integrated:

_ fnv . (fv) dx = — fﬂ(v j)v dx — fQ(Vv)fdx

Green's Formula for R?

—f(V-j)vdxz—f j-r‘i-vdS+fj-Vv dx
Q 20 Q

very useful if v = 0 on 9Q

other green stuff:

0 d
V2u+Ve - -Vu dU = —udS, “
()
U oy on

an
v

fuvzvdsz u—dS—fVu-VvdU

U au oJdn U

Integration by parts

fqbdivﬁdv =f ¢5.d§—fﬁ-grad¢dv
Q Q0 Q

Ju dv
—v dQ = f uvn; d(oQ) — f — udQ //maybe incorrect
a0%; 20 a0%;

For scalar output: [ u, * vdx = [fu*v dx— [ u *v, dx
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R — 1
another example: [ Uty dx = — [ ufdx + uux|0
Integration by Substitution

y(b) b
@) dx = f Fr®) v @ de

y(a)

f@) dv = fuf(y(u)) |det(D 1) ()] du

y(U)

Chain Rule
Juon(a@) =]u(v(a)) Jp(@)

du Oudx N du dy

dr  dxdr dyor

beide richtungen, x und y, beachten!! weil partielle ableitungen
9 du _ 9%ude

. . L . . 00, . .
Trick: —— = —5 —— Ziel: moglichst viele bekannte terme erstellen wie — indem man den linken teil
d0x 00 0602 ox ax

zweiteilt.

Triangle Inequality
[l + 1| < [1xI] + Iy

Reference Shape
Remark 5.1.1 (P ic Finite El ):
In practice, one usually considers a reference element K and a mapping
®y: R — K that maps the reference element K to any given triangle
K € T, as shown in Figure 5.5.
Here, the function @ is an affine mapping with the property that for
all £ € K it holds that

x=0x(8) = (N =No Ne=No)£+N,
=Jx2+ N

where A;, Nj, NV are the vertices of the triangle K € Ty,

All computations involving the element load vector and element stiff-
ness matrix associated with the triangle K are then performed on the
reference element K, ie.,

F = [ S dr = [ f(@c(5)pe(Dldeticlds.  (16)
and similarly, .\—C/\ CQ(V’)
A r-J e MXV ¢
&

Ay = A (Ve Vog) dx

= [ (00 [T ) [detiids. il
VolueTacoe
WH‘?.P

(5.15)

(517)

polar coordinates
x(r,®) =1 - cos(0), y(r,0) = r - sin(6), (r,0) € [0,0[ X [0, 27|
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for a function u: Q X [0,T] = R, define @i(r, 0,t) = u(r - cos(0),r - sin(0), t).
On the unit disk, r € [0,1]

Laplace Operator
Laplace einer funktion f(x,y,t) ist die zweite ableitung in x und in y Richtung. Nicht in t.

A _0%u  0%u A~_aza 10 10% 10 ( ow\ 6 10%
YSae ez ST e Trar Tizagr T m(ra) 2 9¢?
Taylor

() "
T, (f(x,0) = Zf D - = @ + f @0 - )+ ey 4

Rest Ry f(x,a) = fx GO pn (6 de

Gronwall: If the derivative and the function are together in an inequality
Theorem A.1 (Gronwall’s inequality). Let 3(t) be continuous and u(t) be differ-
entiable on some interval [a,b], and assume that

u'(t) < B(t)u(t) Y t € (a,b).
t
u(t) < u(a)exp (/ .f(l)) Vte [a,b].
Transformation

Given a function that takes f and returns the integral of f on [-1,1], insert the argument as f * 0.5 *
(b — a).norm(:3)

Then

Equations
Poisson (FDM) Elliptic time-dependent
—u"(x) = f(x)

. o . 1 _
Maximum Principle satisfied: ||u||Ax’C>0 =3 ||f||Axlm , Where ||q||Ax'm =

sup
1<j<N

()

Can be solved explicitly in 1D using Greens function (or with finite elements):

1-x), 0<y<
u(x) :folc(x,y)f(y) dy. G(x,y) ={§El_;3’ xsi]/SJ;

G here is continuous, symmetric, > 0Vx,y €]0,1[, for a fixed x or y, it is piecewise linear in the
other variable.
Any solution w to the poisson equation with righthandside g(x) satisfies the estimate ||W| |c>o <

1
sllal

Poissonin 2D

Uj—1,j=2Ujj U4, | Ui j—1—2U4 U541 . " .
—( — Ax’; ==y Aylzj = )z fijy F = 0x? % [foo, o) fu—1,n-1], Alist tridiagonal mit B

auf Hauptdiag. und (—I) auf nebendiag. B ist 4 auf Hauptdiag und -1 auf nebendiag. Au = F

Media Porous (FDM)
—V-(cVu) = f inQ = (0,1)?

=>f= —%(03—2) —563—, (a?—Z) where o is a function
X LYj X 1'3’1 X1, O (X, _LYj
aax< gz) —( :22 )ui+1,j ( )hz ( : Zyj)ui,j-l'—( lhzz —)ui—l,j

which gives if also done for the right side:

] Tizk.j Tij+i ij=4 i+dJ i=4 . ij+4 i
= 1+ = = = =y 5

- i =— S Uip ) = U] j———U 1= -

" h? R T R T h? =1 h2

Heat Equation (FDM) Parabolic linear

O hui=0 onax[0,T]
3 u=0 on ,
u =0

2Q
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u(x, v, 0) = U (x, y)

Total thermal Energy that must decrease over time: fQu(x, t) dx is originally €(t) =
1,1 2
Efo lu(x, t)|* dx

Boundary Condition —Vu - n = yu on dQ X [0, T] with y > 0 stands for convective cooling.
Assume Temperature to never be negative.

Maximum Principle: min (0, min(uo(x))) < u(xt) < max (0, max(uo()()))
X X
More information on stability at FTCS

Linear Transport equation in 1D (FDM) Hyperbolic linear
ur+c-u, =0

a—u(x, t) + a(x)a—u (x,t) =0, (x,t) € (0,1) xR
ot ox

w(0,8) = u(1,0), gl; 0,1) = Z—Z(l,t), teER
u(x,0) = up(x)

To solve with method of characteristics

//upwind scheme usable here

dE(t) _ d [qulxt)dx
dat dt <0

u; —Au=0, —Vu-n=yu ondqQ, u(x,0) = uy(x) on Q

Radiative Cooling: Energy decreases with time =>

For hyperbolic advection(transport) equations, any choice of timestep results in an unstable FTCS
scheme.

Burger's Equation (FVM) Hyperbolic

inviscid Burgers equation: u; + uu, = u; + G uz) =0
X

Is a scalar conservation law => fulfills TVD that ||u(x, t)|| < ||u0(t)||
//insert s as condition for x smaller than / bigger than in the weak solution U.

with Method of Characteristics:
ox ot 1 du
ot Yo dt
= x'(t) =ulx,t) =uy(x) = x(@) =t *ug (xo) + x, for starting points x,
//characteristic line goes straight upwards if it containsno t - e.g. if ug = 0.

= 0 (const auf charakteristik)

Scalar conservation laws (FVM) Hyperbolic non-linear
SCLs include Transport equation and Burgers equation. U; + a(x, t)U, = 0
SCLs satisfy the minimum/maximum principles => stay in interval of start usually

rormy At 1
. 1 <z
CFL: max f'(U; )Ax <3
Even if ug is smooth, the solution can become discontinuous
Need weak solutions

Lemma about Energy Bound for Scalar Conservation Laws:

Lemma 2.1. Let UU{x,t) be a smooth solution of (2.1) which decays to zero at
infinity, i.e, lim Uz, t) =0 for all t € R, and assume that a € C'(R,R,).
s o

|=]

Then U satisfies the energy bound
(2.6) /f'ﬂ;-.r}d.e-:-;.““"f-l‘ / U2(z)dx
JB JR
for all times t = 0.
TVD

Hyperbolic Equations like the transport equation are TVD if the total variation at step n+1 is not
larger than at step n.
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du
TV:_”& dx=Z|uj+1—uj|
j

A numerical scheme is TVD < it is monotonicity preserving (if u™ is monotonically in/decreasing in
space, then sois u™*1.)

Elliptic, Hyperbolic, Parabolic
0% f 0% f 0% f

Alx,y)—=—+B(x,y)m——+Clx,y)—— =0

(x y) (ax)z (x y) axay (x y) (ay)Z
B? —4AC > 0, Hyperbolic, 2 real characteristics
B? —4AC =0, Parabolic, one real characteristic
B? —4AC < 0, Elliptic, no real Characteristics
Characteristic is where the equation becomes an ODE

Finite Differences
Convergence of approx order 2
u: value at Point, f: load function

fe+8)-rfe-

f/<x+%>_f’(x—%)_f(x_h)+f(x+h)—2f(x)
h - he

&) =

) =

Expressing the given discretization problem as Au = F, the stiffness Matrix is
2 -1 0 0 0
11-1 2 -1 -~

A=—=| 0 -1 2 -
h? 0 - =1
0 w =1 2
Up f(x1)
U= uz , Fe=|f (xZ)
Un f(xn)

the boundary points are given by the Dirichlet Boundary and are not contained in u for this

. . . 1 e
excercise with N+1 subintervals. (We can also move the factor wz to the rhs and get h? * F which is
faster to compute.)

Linear FEM in 1D
Trial function u is piecewise linear on an equidistant mesh => using hat basis to express it

N-1
u(x) = z W @;(x), constant factor u to scale the basis ¢
i=0

So starting from a variational formulation ff u' ()v'(x)dx = fff(x)v(x) dx, ue
H}([a, b]), Vv € H}([a, b]), we can choose the hat basis function as testfunction v and get by
inserting [ u' ()v' (x) dx = TN w [ i (0@’ (x) dx V) € [0,N —1].

Thus, 4;; = [ @{()@(0) dx, n={u}_ . F = [0 fv)dx = [} f(x)e;(x) dx
forAjfi=F

Variational Formulation

After multiplying both sides with a testfunction v € H3 (), integrate. Then probably use Green /
partial Integration (especially for poisson) to get an integral on the boundary, which is zero.

This gives the formulation "Findu € V' = {W EH(Q):w=gon GQ} such that .... " followed by the
newly found integral equation.

Here, g is the boundary function from the condition u(x) = g(x).

NumPDE Seite 5



More general PDE for bilinear form

—V-(cVu+au —y)+BVu+du—f=0 onQ
boundary conditions: u = g on 0Q

these coefficients can depend on x and y, but not on u
c can even be matrixvalued. a, v, § are vectorvalued
d,fER

f—(V~(cVu+au —y))v+(,8~Vu+df)v dx=0 Vv,v=0o0ndQ
Q

partial integration and then v=0 on the boundary because it is in H(l)

= f(cVu+au —y)-Vv+(ﬁ-Vu+df)vdx=0
Q

zf(cVu)-Vv+u(a-Vv)+v(,b’~Vu) + duv dx=fy-Vv+fv dx
Q Q

choose basis functions and test for all that fulfill the boundary conditions.

Choose c,a, B,v,d, f in a nice way to get the PDE of the Core Problems

Quadratic FEM

Error for a quadratic solution is machine precision. We only have an advantage of convergence order
in comparison with LinFem if the solution is in H2.
(EMP: Falls fin H1. Und u in H1 denn linfem order 2 fiir L2 norm, 1 in H1. Und falls u in H2 denn
quadfem order 3, 2 in H1 norm. Das stimmt.)
Exercise 1 Quadratic Finite Elements for the Poisson equa-

tion in 2D

We consider the problem

—Au=f(z) nQcR? (1)
u(xz) =0 on d0 (2)
where f € L2((2).
We know that its variational formulation is given by: Find u e V = H 1(£2) such that
/ Vu(x) - Ve(z) = / flz)v(x) dz, forallve Hl{[!!). (3)

We solve (3) by means of quadratic finite elements on triangular meshes M of ). Consequently,
we consider the following finite-dimensional subspace of “11[!!}:

vh = {u‘: 1 =+ R: wis continuous, w = 0 on 1,
and w|g is a second order polynomial vV K € M }
So we consider two types of basis functions. The ones associated to the vertices of the mesh and the
ones to the midpoint of each edge i of the mesh.

1, =7,
bi(xj) = {O, lelse]'l =0,.., (NVertices - 1)

W) =16, et =0 (Mo =)

Ny—1 Ng-1
Suy@ = ) whi() + Z o, i) = Z prnes)
i=0

Solution: We have

[n \—h\ (x) - Vf) () de i,j=0,....,Nyv —1,
A = Ja '\_h\ .J:] T‘;—-h( x) dx i=0,...,! Vi — 1, = Nyp..... ! V-1,
P Jo VN g (@) - VBN (x) dz i=Ny,....] N—1,j=0,....] Ny —1,
Jo VN yo () - Tef (@) dz ij=Ny,...] N —1.
p _ o f@) (@) de i=0,...,] Ny — 1.
| - r - . .
Ja f{:r}t';‘”__\-"_ﬁ_:z] de i= Ny,...,! Vo= 1.
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Should give a 6 x 6 Element-Stiffness-Matrix

FEM Error analysis:

ep=uU-—1u,

Galerkin orthogonality: a(e,, w) = 0,vw €,

Galerkin orthog. + continuity + coercivity =>

|en|V < C|lu —W||V ,Yw €V,

FEM error < interpolation error

Example: for piecewise linear finite elements with continuity and coercivity

||en||H& < ChlJul|

H*(a)
2
e | < Ch?||lu
| n LZ | | HZ(a)
Let V be a real Hilbert space with the norm || « ||. Leta : V' x V' — R be a bilinear form with the properties

« la(v,w)| < vljv|| ||wl| for some constant ¥ > 0 and all v, w In V' (continuity)
vafv,v) > a [u['2 for some constant a > 0 and all v In V' (coercivity or V-ellipticity)
Let L : V — R be a bounded linear operator. Consider the problem of finding an element « In V' such that
a(u,v) = L{v) forallvin V.
Consider the same problem on a finite-dimensional subspace Vj, of V, so, uy, in Vj, satisfies
a(up,v) = L(v) forallvin V.
By the Lax-Milgram theorem, each of these problems has exactly one solution. Céa's lemma states that

flu —up|| < l}uAuE forallvin Vj,.
a

That is to say, the subspace solution u, Is "the best" approximation of u in Vi, up to the constant y/a.
The proof is straightforward
allu = up)|® < alu—up,u—up) = alu = up,u—v) + alu—up,v—1up) = alu—up,u—v) <ylu—upfu=v]| forallvinV;.
We used the a-orthogonality of w — uy, and Vj,
a(u—uy,v) =0, YoinV;
which follows directly from Vj, C V

a(u,v) = L(v) = a(uy,v) forailvin Vj

FEM example: expected Convergence of —Au(x) + cu(x) = f(x)

linFEM order 2 and 1 for L? and H! Norms. quadratic FEM orders 3 and 2 respectively. At least

if exact u is smooth
LinFEM: The error satisfies the estimate |Iu — uh| |H1(Q) = O0(h), where u is the exact
0

solution to (1.1)-(1.2) and uh is its linear finite element approximation on a mesh with
meshwidth h. Thus, the right error curves are the one with slope 1 with respect to the
meshwidth and the one with slope 0.5 with respect to the number of degrees of freedom

1
(because in two dimensions h = O(N_E).

Shape Functions

Jinline double lambda(int i, double x, double y) {

U . ,:l':{[:r']' = (2Ag(x) — 1)Ap(z).
yelse sf =) i et (2) = (2A1(z) — D As (),
_ e S o5 (x) = (2A2(x) — 1)As(2),
| X (x) = Dolz) A (2).
onedimensional r'.{{[-":]' = 4\ (x)Ao(2),
K

;.’]-[I} = 4Mo(x)A2(2).

quadratic

Hat Function Derivative and FEM stiffness Matrix

;. ifx € [(j—1)h,jh),
. ifx € [jh (j+1)h],

0, otherwise.

gi(x) = ¢ —

e
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Hence, forall i, j = 1,..., N it holds that

0, if |i —j| > 1,
Ay =(eboj) = { -} if [i—jl=1
w0 1de=F  ifli—jl=0.

= Axjog h

Therefore, the matrix A is given by

2 -1 0 0
-1 2 -1
A= .;l_z 0 e e e ol - (4.43)
-1 2 -1
i 0 0 -1 2_

Thus, up to a scaling factor, the stiffness matrix A in FEM is identical to the
matrix /A that arises in a finite difference method.

implicit Finite Difference Scheme
AU™ = F* = yn, A has (1 + 22) and — A,—A on the diags

urtt-gh Ul —2ut+ul,,  URt-2ufttul
Crank-NlcoIsonScheme<’ L]l= Ot & | 4

At 2Ax? 2Ax?

(1 —An} + %u}ﬂrl) and A is on the main diag. (1 + A) and on the second diags —%

Norms
maximum Norm

||u - uNi| |oo = MaX;<j<y u(xj) - uNj| where uy is the discretized solution and u is the exact

solution.

Convergence Study

log(ex+1) — log(ex)
log(ek) - log(ek_l)

Crs1 F C*e}i7 = logey,1 = logC +ploge, =>p =

L2-Norm

171 j = fn (F(0), F(x)) dx

Alternativ als Vektornorm 12: Wurzel der Summe aller quadrierten Absolutbetrage.
Inner Product: (u,v) = [u-vdx

L1-Norm, generell Lp norm
Vektornorm. Summe aller absoluten Betrage.

generell als Vektornorm: ||x||p = 3x|P

H1-Norm

2 2 2
||u||H1 = ||u’||Lz + ||u||L2

H1 Norm immer grosser als L2 norm

Inner Product: (u, v) 1 = [(Vu, Vo) + (u,v) dx

HO1-Norm
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Inner Product: (u,v) = [(Vv,Vw) dx
2
llull,y = (ww) = f (Ve V) dx

Spaces
H}([a, b]) is the function space of all continuous functions v such that

b
f |[v'|?dx < C and v(a) = v(b) =0
a

Inner Product: (v,w) = [ (Vv,Vw) dx

The above sobolev space requires the function to be in L?(£), which means that it is squre-
integrable and the scalar product is defined in L? as f vw dx.

Q: Difference between H space and C space.
A: His about square integrability of derivative. C about continuity

Eine funktion ist element des sobolev-raums H?, wenn sie in L? ist und die erste Ableitung square-
integrable ist. Das inner product ist (v,w) = fQ(Vv, Vw) + Vw dx

H? ist ein Hilbertraum, so wie auch H} und L2. D.h. es hat ein Skalarprodukt und der Raum ist
vollstandig bzgl der damit induzierten Norm -> jede Cauchy-Folge konvergiert.

Das Skalarprodukt sei linear im zweiten argument und semilinear im ersten. D.h. mit A € C gilt

(u, A2v) = A{u, v) und {Au, v) = A(u, v).

HS contains L? functions whose weak derivatives of order up to s are also L2. So if something is in
H?Y, then its derivative is square integrable.

Cé (Q) is the space of continuously differentiable functions with compact support on Omega. That is,
they vanish outside of it. This implies they will vanish on 9£Q.

FTCS Explicit vs Implicit Euler

Example for 1D heat equation. (For transport: uf ** = u' — Upsy = Uy + AL - f(tk,yk), where f

% (ulyy —uy)) approximates the derivative

ou 92u Implicity would instead have

9t %352 f(tk+1,yk+1) with the |hs the same.

ultt -y a , . . Explicit equals forward in time. Central

At Ax? (ui+1 —2u; + ui—l) in Space see to the left in FTCS.

R u?” .- %:Ac_z (u?+1 _un 4 u?_1) Backward in space see Upwind.

e QAL 1
<
Stable iff — < -
For hyperbolic advection(transport) equations, any choice
of timestep results in an unstable FTCS scheme.

Upwind Scheme

The central scheme leads to a growth of energy at every time step and is unstable. We need to find
schemes that posses a discrete version of the energy estimate.

Simplest: Forward in time (implicit), backward in space (explicit)

if the speed of the characteristic - a - is positive and the direction of information propagation is from
left to right, then we use backward in space. (Example with linear transport eq:)

ou, ou_ uptt = up N (U,-" - U,-"_l) 0
N * — = = =
Jt @ 0x A At ¢ Ax

+1 _ aat
= an = an - _A_x_ (an - an—l)

and with a < 0 we use forward in space instead:
+1 n_ _ygn
ot —up (U = UF)

a =0
At Ax
This can generally (for both signs) be formulated and then reformed to
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(Ufn+1 - Ufn) ( 1~ Ufn-l) lal / n n o g
A YT oA T 2Ax( i = 207 + ULy
// with |a| = max{a, 0} — min{a, 0}
The upwind scheme is stable if ¢ = |2AA;E| < 1. Then it satisfies the energy estimate E™*1 < E™,
where energy is defined as E™ = éAx Z]- (an)z .
Energy decreases a little but is mostly conserved.
Important: ratio of At to Ax . To make more accurate, keep ratio and refine mesh.

Solution:  Since the direction of propagation is to the right (i.e. a(z) = 0, Y € R), the
upwinded FDM scheme uses the left differences, combined with the Forward Euler scheme:

T Jr ‘Af fr rn
{.I +1 {J +H(EIJI{(} - {'_J'—IJ‘
with time step size At restricted by the CFL condition

At < sup |a(r)|Azr = Ax.

zeR
FDM
12U

FDM:Derivatives are discretized. e.g. u”(xj) ~ St AZ;W’ .
FDM for Poisson: Equation —u;,q + 2u; —u;_4 = (AX)ij leads to Au = F, where A is tridiagonal

fi
with -1/2/-1and F = (Ax)?*|

fu

=> rather large System solving involved in calculating the derivatives. But it is tridiagonal, diagonally
dominant, positive definit, symmetric and because of the last two invertible. So we can use any
discrete linear solver, e.g. LU decomp.

Empirical convergence of the FDM scheme is 2.

Method of Characteristics

x'(t) =alx(®),t), x(0) =x

for the given equation C;—Z + a(x,t) 3—Z =0,V(x,t) ERX R,
x(t) describes where the solution U stays constant.

Case of constanta: x(t) = xy + a *t
= U(x,t) = Uo(xo) = Uy(x — at) //charakteristik eq auflésen nach x0 und das in U als argument
einsetzen.

U, > Ui = Shock = characteristics flow into the shock = multiple solutions

U, < Ui = Rarefaction = missing information

= Rankine — Hugoniot to find a possible weak solution
note that in that case, we could also add steps in between to get multiple shock lines and still
have a weak solution by RH.
So we rather create a rarefaction wave which gives a continuous but not neccessarily
differentiable solution.

IN BOTH CASES: The wave speed is bounded in abs value by maximum of |f'(U;)| and |f'(U,)|

Burgers Equation has characteristics of form u*t+x0 because
. - d
u is constant on characteristic x and 5%6 = U,
//but this arguing doesn't seem to work with rarefaction where x/t cosnt

If the solutions for a double-riemann problem have again meeting caracteristica, take the same flux
function and set U; and Uy to the values to the left and right of the new problem zone.

Steps from Characteristics to solution
replace boundaries depending on x, with x by solving equations like x = x, + t. Also insert that x in
u as parameter
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Consider the one-dimensional linear transport equation:

o d
E”('r'” +rr{.:}mir(.r.a‘] =10, Wiz, t) eER xRy, @.0)
u(x,0) = uglx), Vr e R,
with coefficient a(r) given by
0 ifr<0,
alr)=<x H0<r<l, 4.2)
1 ifl <

(4a) ¥ Write down the equation of characteristics of (4.1) and sketch characteristic curves in the
sub-domain [—1, 2] up to time { = 1. Use the equation of characteristics to derive an expression
for the exact solution of (4.1) in terms of initial data ug(x).

HINT: For the characteristics equation, do not forget to specify the initial conditions.

HINT: The solution to ODE of the form dﬂi” = ax(t) is given by x(#) = x(0) exp(at) for o # 0.

HINT: To find the characteristic curves with starting point 0 < =, < 1 a
u(x,t) withz > 0and 1 + ¢ > x, you will need to carefully analyze wh

to find the solution
happens at r = 1.
Solution: The characteristics equation for the equation (4.1) are. fia: du/dt + du/dx dx/dt = Du/Dt
=> dx/dt = a(x

0 ifx <0, / ()
=a(r)={r if0<r<l,

if 1 < .

dx(t)
dt

ith x(0) =z, € E.

Integrating all three cases, we obtain

Ty if oy < 0,
z(f) = { min(zpexp(t). 1 + logzg + £) if0 < zp < 1,  x=x0%exp(t)
xp + ¢ if 1 < . => x0=x*exp(-t)

Since the solution is constant along characteristic curves =(t), il x0=exp(x-1-t) &&

x0<1 => exp(x-1-t)<1

tg(x) ifr <0, =>x < (1+t)
(2. 1) gl exp(—t)) iflcz<l
u(r, t) =
uplexp(r —t—=1)) ifl<z <1+ a‘.-e//
ug(r — 1) fr>0and 1+t < x.

Vorgehen FVM (Characteristics, Burgers, Shock&Rarefaction)
ou dt ou 0x d_u

Take equation and compare to ——— + ——— = —. If rhs is 0, the solution is constant on the
ot ds  0x 0s ds 5 J
s e . u u 0x du . . .
characteristic. Parametrize, usually x = x(s),t = t(s) = ~ T 3237 = 5; in an easier version. Then

figure out a—: is where x is the characteristic (For Burgers, the Characteristic is simply x(t) = x, +

Ug * t). Take that and reformulate to x, = -+, then insert into u, (xo) to get u(x). Sketch the
characteristics, set them equal to find where they intersect (time and space) and build
Shock/Rarefaction as described below. if U;, > Uy, it's a shock. Use the characteristic as condition
and the u(x,) as value. only consider t until the relation between left and right would switch. if
that happens, solve that new problem again.

Rankine-Hugoniot (U; > Up)

Shock speed s(t) = L%% for a weak solution U, with U, left of the shock and Uy right of
the shock. f is the flux (usually multiplied with %)

this is only the speed of the shock, so the position of the shock would be x; + s - t.
This gives for the boundary terms regarding x a value dependent on t - that mus fullfill the initial
data, so choose x( correspondingly.

Uy, if x < -t
e.g. u(x,t)={U; i;x>—t

Lax-Entropy condition
Requirement that information is not generated by the shock but comes from the initial data instead.

Characteristics flow from the x-Axis into the shock, not out of it. This Condition is TVD - that is, the
BV norm decreases in time.
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1Al

good / #T
U,=1,Ug =0,x = 0.5¢ A-.:

Ir

N

;_:“

bad (create rarefaction instead)
1 5
U, =0,U;s =1,x =05t bzwx =3 &g

U,(t) > s(t) > Ug(t), for burgers
f’(UL(t)) > s(t) > f’(UR (t)), for general convex f
Entropy solutions are TVD

Rarefaction waves (U; < Up)
Assuming self-similarity: the solutions only depend on the ratio x/t
fis assumed in proof to be strictly convex, so f' is strictly increasing.

Create rarefaction solution as V G) = (f’)_1 G) assuming Vz # 0 in (f’ (V(E)) - %) =0
Ul, lfx < f’(Ul)t
o= (3),  rrue<x<r)

U, ifx>f"(U)t
remember to multiply with t A

Weak Solution

(3.15) / U + flLN)ge dedt + / Ug(x)e(x,0) dx = 0.
SRRy YR

Definition 3.2 (Weak solution). A function U' € L=(E xRE_) is a weak solution of
(3.4) with initial data Uy € L>=(R) if the identity (3.15) holds for all test functions
¢ ECHR x R,).
Note that the identity (3.15) is well-defined as long as [/ € Lilw[__v_ x Ry).
If a Weak solution U is also differentiable, then U satisfies (3.4) point-wise. Hence, the class of weak
solutions contains classical solutions.
Weak solutions are not neccessarily differentiable or continuous.

Oleinik entropy condition
If the flux f is not strictly convex.

k
(t)<f() f( L) orall k.U, <k < Up
Finite Volume Method
Domain [x,, xg]. Point discretisation x; = x;, + (j + %) Ax, j=0,..,N where Ax = %.

. . . Ax .
Midpoint values are in between: X 1=X =X + jAx
2

These midpoints are the borders of the cells. So the middle of the cell is still with an integer index.

Point value approximation does not work because there are points where the solution is not

continuous. So we use cell averages U" ~ —f "+ U(x tn) dx

Conservation Law U; + f(U), =0
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X1 X, 1
Integrated:f T2 U(x, tne1) dx—f d U(x, t,)
X, 1 X. 1
j=3 —3
ftn+1 tny
= — U(x. 1,t dx+f U(x 1,t\\ dt
o T(OCH) L T Y)
tn+1
This gives F*{ = — U(x. 1,t\\dt
g J+ % At f( (J'+% ))

At
and U”+1 ur —— F —F",
J Ax i3

This is not explicit because F needs knowledge of the exact solution U.

Godunov
U + f(U)x =

0
Riemann Problem at each cell interface n o if x < X
U(x,t") =
e if x> x].+5

Solutions of this Riemann Problem are self-similar
X — X
UGet) =0 < J +%>
. x’ — D —
] ] t—tn

Wavespeed is bounded by max;

1

n n
(U )| so CFL: max; |f (U ) ==
to ensure that the neighboring problems do not interact before the next time level.
Solution is constant when £ is.
Explicit Godunov Flux:
n = _. = _. —_
Fj+% =f (U] (0 +)) f (UJ (0 )) at the edge

t‘l’l+1
F' ~— U/(x. 1,t\) dt
j+% At Jin f( (J+% ))

Finite Volume Scheme: U"+1 Ut - (F" 1 —F™, )
Ax \ j+5 Jj—5

. n —_ n n —
Godunov Flux: FH% =F (UJ ,Uj+1) =
U}lsygls?]]’.lﬂ f(@) ) if Un < U]7:-1
Unngun f(@) ’ lf jﬁ—l < an )
j+1=9Y;
flux
These two together are the Godunov Scheme

also valid for non-convex

Computing it: If flux f has a single minimum w_and no local
maxima it is strictly convex, then

= ()

= max (f (max (Uj”,w)):f (min( e w)))

(local means without global and only in the interval of the
starting values)

Note: dt = CFL * dx / max{1,max |f'|}in der Ubung
"The point is that the derivative of the
BL-flux is increasing around the initial values we gave them, therefore,
the normal CFL condition won't really work since f'(u) is not bounded by
the values in the cells initially. A smaller CFL number does the trick
(around 0.2), and the max of f'(u) and 1 also works (you could just do
the global max of f'(u)). "
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Lemma for two-point flux FVM
the scheme is monotone if F is Lipschitz continuous, diffable in both arguments, non-
decreasing in first argument and non-increasing in second argument. This involves

oF oF Ax
—_— — < =
6x1 (b’ C)| + ‘axZ (a, b)| - At

(Linearized) Roe
Approximates the exact solution that Godunov would needs.
n -
f(upr), if 4,120

F — FRoe (Un’ }+1) 2

j+3 f( jn+1), if A]+1 <0
f( J?Efl)_f(an)
Aj+% = Ujﬁ-l - Ujr:-1 ' sy +1 * Un

f, (an)l lf ]+1
f(U)x = f,(U)Ux = A\j_'_%Ux

A'is assumed constant between two cells.

Use with the finite volume Scheme above.

Is simpler to implement than Godunov, because no optimization problem. Can be as good as
Godunov in 1\0 case, but can also fail af in 0/1 case. It fails at solving (some) rarefactions
because a rarefaction wave can travel in both directions but the approximated 4 is linearized.

Lax-Friedrichs scheme

Two waves from the middle to the left and the right.
! Ax _ Ax

.
5 1=——, s 1=—
j+ At j+5 At

N[ =

M)+ U)  Ax
Fn — FLxF (Un’ U]r-ll—l) _ ( ) ( J ) (U?}I—l _ U_n)
}+ 2 20\ 1

stable, nonoscillatory, approx. the entropy solution, but computed solutions are diffusive.
Shocks are smeared. Results inferior to Godunovs.

Rusanov Scheme
Instead of the maximum speed, use locally selected speeds s.r+

max(|f’ (an)| ) |f’ (Uﬁl)D

n n T
Rusanov Flux: F;,il _ FRus( Jn’ ]+1) f(U] )+2f(U]+1) B maX(|f (U] )2||f (U1+1)|) (an+1 _ an)

~.
N
-
+
N|=
-
T

2

Bilinear Form
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Definition 5.2.2 (Bilinear form): Leta:V x V — R be such that

a(av + o, w) = a-a(v,w) + B - a(d, w) (5.23)
a(v,aw + pw) = a-a(v,w) + p-a(v, @) (5.24)

You,0,w,@ € V. Then, a is defined as a bilinear form.
Example 5.2.5: (-, ) in a Hilbert space is a “symmetric” bilinear form.
Definition 5.2.3 (Linear form): Let L: V — R be such that:

L(av + pw) = aL(v) + BL(w) . Vo,weV (5.25)
Then, L is a linear form

Example 5.2.6:  Fix f € [2(()), then

Ly(g) = [ fgdx (5.26)
N

defines a linear form.

(Ib)  Specify the bilinear form and linear form in the variational formulation obtained in the
previous subtask.

Solution:

alu,v) = /(.r"’+y"+ 1)Vu(z) - Vo(x)dz, (v)= /f(:c]r(;t):lr.

Ja

Convex
if second derivative >0

(5a) Most of the examples in the lecture slides are for convex flux functions!
Determine the following:
e Is the flux function f{u) = (u*)/3 convex for all values of u € E?

e Is the flux function f(u) = (u?)/3 convex for all values of u € [0, 1]?
Is the convexity of f in the interval [0, 1] sufficient if we consider only initial data given in (5.2)?
Explain why.

Solution: The flux function is convex only in the interval [0, oo0). Since the scalar conservation
laws satisfy the minimum/maximum principles, the support of the solution u is contained in the
interval [min ug, max ug| at all times ¢ > 0.

Lax-Milgram Theorem: unique solution

2
If B is a sesquilinearform (or bilinear), and coercive on H (B(x,x) = ¢ ||x|| for some ¢ > 0)
then given aw € H, there exists a unique element x € H such that B(u,x) = (u,w) forallu € H.

For such x one has ||x|| < % | |w|| where ¢ > 0 is the bound from below of the form (That is,
B(u,u) = c||u||2 Yu € H)
EXAMPLE START

Notice: Coercivity is with a(v,v)
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(Ib)  Suppose now for this subtask that h = (). Show that the solution to the vanational formu-
lation in (la) exists and it is unique.

HINT: Use Lax-Milgram Lemma.

Solution: Since u does not satisfy homogeneous Dirichlet boundary conditions on ['j;. before
applying Lax-Milgram Lemma we use the offset function technique. Indeeed. the variational
formulation can be restated as:

I'p

Find u = ug + u,. ug € Hy ., (Q), uy|r, = g. such that
a(ug,v) =1(v) — alu,,v) = [(v) forallve H;_]-D(Q).

with bilinear and linear form defined as in (1.4). }
We have to prove that the hypothesis of the Lax-Milgram Lemma are fulfilled considering [
instead of [ as right-hand side:

e continuity of the bilinear form:

la(uo, v)| < luolar @ vl + Cl||“n||1_2(m||"||12(s'1) <(1+ Cl)|IUOHH1(!})||r"H1[Q)‘

where €'} := sup,¢q ¢(x) and we used the Cauchy-Schwarz inequality. Alternatively, one
can use Poincaré’s inequality.

e coercivity of the bilinear form:
2 2 . 2
a(v,v) = vl + Collvlli2) = min{1, CE}”"”H'(Q)'

with 'y = infyeqe(x) > 0. Alternatively, one can simply observe that I"Eirlm] -
C21|-i,'||iz o = [v]3 (0)+ Which is sufficient thanks to Poincaré’s inequality.

e continuity of the linear form:
we have

I(v)] < ||f||L?(s'z)“‘-'”;_!(!z) < ||f||L2(!1)||"||Hl[s'z)
(where we used the Cauchy-Schwarz inequality); thus, thanks to the continuity of a(-, -):
“(*” S ||f|IL!(Q)|If-'I|Hl(11) + (1 + (.l)“uy”h'lm) II i-'”Hl(m S (-'3""”;;1([1)

with Oy := || f|| 2y + (1 + C1)|lgll 452 r)» Which is bounded because g continuous on the
boundary implies that u, € H'(£2).

Solution: We check that the assumptions of the Lax-Milgram Lemma are fulfilled:

e Continuity of the bilinear form:
using the Cauchy-Schwarz inequality we get

la(u, v)| < sup(z® + y* + Dlul gy 0l sy < 2Mul oy 1ol ey (L5
zef?
for every u,v € H} . (Q).
e Coercivity of the bilinear form:
a(v.v) 2 inf (* +y* + Dlvling) 2 [vhne) (1.6)
for every v € Hjp, (€2).
e Continuity of the linear form:

[1(v)] < ||f||L2m)||‘-’||L?(s'z) < Cp|

2@Vl (L7

for every v € H'{I‘D(Q). where we have used the Cauchy-Schwarz and the Poincaré in-
equalities (with ('p> the Poincaré constant).
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Find u € V such that:
alu,v) = L(v) VoeV (5.27)

In general Eqn 5.27 may not be solvable, however under certain assumptions
on a and L, we have the following result:

Theorem 5.2.1:  Let the bilinear form a have the following properties:
1. a is symmetric, i.e.
a(u,v) = alv, u) YuveV
2. a is continuous, i.e.
la{u,v)| < rljullvizllv forr >0
3. a is coercive, i.e. 3a > 0 such that
la(v,2,)] = alloll}
And let the linear form L satisfy
4. L is continuous, i.e.

|L(z)] < Allo|lv veV

Then, the variational problem (Eqn 5.27) has a unique solution u € V.
Furthermore, the solution satisfies the stability estimate:

."\.
P —. 5.28
flllv < " (5:28)

Given the functional | as

j: v R
w w

(5.29)
o— J(v) = }a(o,0) — L(?)
then the solution u of Eqn 5.27 satisfies
J(u) < ﬂl‘f:'l{ J(@) (5.30)

Remark 5.2.1:  The existence of a solution u of Eqn 5.27 is a conse-
quence of the Lax-Milgram lemma.

for the upper bound (5.28), A and a come from coercivity and continuity above.
EXAMPLE END

Poincaré inequality (for coerciveness)
Let psothat 1 < p < oo and Q a subset with at least one bound. Then there exists a constant C,

depending only on (0 and p so that for every function u of the Wol‘p(ﬂ) Sobolev, ||u - uQ||Lp(m <
C ||Vu||Lp(m, where ug = |_511|fﬂ u(y) dy is the average value of u over (1
1
e.g. fo of de<|wll |I71], < Wil fI71], . 412
also works for H' instead of Hg.
EMP: |[ul] p o) < €[IVul| p g 1<P <o
= vl , < c|wl],,
Cauchy-Schwarz
[(u, V)12 < Kw,u)l - Kv, )] = |[ul| - |Iv]]

Notice: Nabla disappears (stammfnkt nehmen)
Foru € H}, folu’v’dx < ||u||H1 7|
0

Hg
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With an additional factor, we just multiply by its supremum or infinimum instead to prove < or =
|f (x +y% + 1)Vu(x) Vv(x) dx| sup(x +y% + 1) [ulgr oy vlnico)
< 2|uly1|v| g in this case

Loglog plot
slope = polynomial exponent
smooth solution of a variational problem in one excercise had convergence 2 in L2 and 1 in H1

Monotonicity
Entropy solutions are monotonicity preserving. i.e. if all initial values of one are smaller than the
other, then this holds at every timestep.

LF, Rusanov, Godunov and Engquist are monotonic schemes. They are also consistent and
conservative.
Consistent Monotone schemes are TVD

Example Maximum Principle
use x; = iAx and make sure summands in step to Ul-”Jr1 before the U™ are = 0. Then we can say that
max(aUj**!) = max(U/"*!) - a (in multiple summands) and solve to get < max(U?) from it
Exploting the fact that
1
ri = iAr  and Tigd = == E)Ar

we get that

urtt =y

— ({e‘+§](r;;1—r") -2 (Ur—Ury)). m=l..Mi=1...N
2e)

Recall that we say the scheme obeys the maximum condition if
max [7]" < max L'l." n=12....
i i

Find necessary conditions on At for the maximum condition to be fulfilled for the scheme derived
in the previous exercise.

Solution: We note that the scheme is equivalent to

Uptt = (l - % (r.-,,% +r',_%)) Urt i ST Ul + i: sroaUf,, m=l.. M i=1..N.
(18)

In order to bound the maximum, we need to guarantee that each coefficient in front of U™ is

non-negative. That is, we require that

1 At ", " =1 A =10 i Al ’ =1
_m(;i+%+ri_%)_ .,_“_ i+d = anc m:,—_%_ .
The latter two inequalities are obwiously fulfilled since ¢ = ) and Ar > 0. For the former, we must

therefore require that
At

L_m(” + 7t )}n

that iz
At

rilAr? (rlﬂ'% * Il’_fi) =1
1

inserting for r; and r,, 1. we see that
3

At ,
= jArArz TArAE AT
248
=5
that iz .
At < 3‘: (19)

We then get that

T A’ TR " A’ rn
111:1.\(1’ L m:'uc{(l ~ A ("-+§ +‘"1—_L.J)f + _\ 5 ,+_f it R ,_%f, 1}

At At At
< (l—.—._, (".+§+"-—_l))“111-‘€“-."|"' —ariey max(Ulh )} + =iy mas(UL,)

= max{ /"

and the maximum principle follows.
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possibly useful: Truncation error from Skript nearby Heat Eq
Implicit FD Convergence with second order in space and first in time

Wy 2T
|T"| = -7 B A);’;n”l < C(At + Ax?) (it can be shown that...) =
if CFL holds N 1|fj —u}l2| < C2(At + Ax?)
explicit FD

< C(At? + Ax?) = Convergence with second order in space&time

Consistency, Stability

Consistency: a finite difference approximation is consistent if the truncation error approaches zero
while we decrease mesh- and timestep-size. Probably show it with Taylor

Consider the following discretization scheme:

Ul =207 + UL,

Ut =Up - At i1 = with At = h. (3.10)
2

(3b)  Show, that (3.10) is a consistent discretization of (3.1), 1.e. that as h — (), scheme (3.10)
approximates the continuous problem (3.1).

Solution: Using Taylor series, we observe that

[ 2 + [rn
e (1, 8") 2 J!—J“ Vji=2,...,N-1, (3.11)
X

and .
e+l pin
i U;

wy(my, 1) = 2 A7

Thus, (3.10) is obtained by inserting (3.11) and (3.12) into (3.1), and hence is a consistent ap-
proximation as b — 0 and At — (.

Wi=1,....] N. (3.12)

Stability: a finite difference approximation is stable if the complete error decays with the marching
step

Convergence is when stable and consistent with the PDE. (Lax Equivalence Theorem)

Convergence Analysis

o (Onvtvita hualys:s : eyvry famchn Q= U™ “‘1 [en 6V)
bt (w02 (fe) o ()= (F9) = (o, )20 YueV®
D gelerki ovtlmpendity : ""‘")E\O s i B
>[¢g’!n (o) = < [e,'(x)[*d¢ = (u.',c..')‘:"(tm‘, )b, W) = (“‘) (""“‘)’)

?
= (e, la-v)) = € optx) (i ~ v dx
§

‘L.u‘y’ﬂM) (S(k (-), ‘J\‘I‘ (‘ (&%)~ V'(‘)’;J‘)‘/l 2 {.’CLS{H;-Q.\ {“ v {,“{c,)

7 ”‘*l'u;(m) = [w=acllpsy € Ww-vllas(s,0) (.“L aptimal £V for "’"['v'e'-«”)

- -~ L )
= L-v‘% .'s‘»ﬁh.ﬁw V=4u = ’u‘(x) —Ihh(lJlf Lo ::: ,l‘ U ,

amd fu(\)-x. u". 1€C *if:.l“vh}'

Lafan < C(-‘ T )!)L
=) u"‘—“"”(_l(on) 4 {' ""u"'{h;jo,;}‘ \ > of et orley g'.
A Ly ofley ovde 2

) Sqm- JML,,J; 271"“ ~>

Separation der Variablen

d
y'=f (x)g(J/).é =f()g(y)
1. Nullstellen: g(yo) =0=>y(x) = 3’0
2. separieren: -~ = f(x)g(y) = — g(y) —dy = f(x)dx
3. integrieren: f ( 5 dy = fxOf(x)dx+ C

4.nachy auflosen. prifen und einsetzen
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Transformation

(1g) Consider now a generic triangle K with vertices ai. a» and a3, considered as column
vectors and numbered counterclockwise. The element matrix A for the triangle K is given by
Ag = Ag 1+ Ag . with the part Ay ; associated to the diffusion term and the part Ay ; associa-
ted to the reaction term. STPUSE again a constant coefficient = = 1.

i‘f } =123

give an expression for a generic entry Ay (2, 7) of Ak, and a generic entry Ay 5(2, 7) of Ay

(i.j=1,23).
Solution: We have A 1(i, j) = [ JOTVA;(2) - JOTVAi(&) det JO d, with

Jb = (m :ai)
and gy = [ Aj(&) - (&) det JD di.
{2 TR Jﬁ‘n]ﬁ: T6)=Bx *a » D=3
Stk = § ¢(3@) | pE(2)] 42 g T
K :

(ogiof; 4 = § (02704 of) (0¢R) off) |4 DTN dZ
[ 4 :

Using the shape functions and their gradients {@';\J} on the reference element,
|

=12

Load Vector L; = f: v*h=> f/lj * h = Auf Strecke 12 ist part bei 2 null fiir j=1
Kronecker Delta um alle Punkte abzugehen (Aufteilung in integral von 1 nach 2
und von 2 nach 3)

(1h) Consider f = 0 and a generic h # (. Write the element load vector Ly (i.e. the vector
associated to the linear form when restricted to an element) for a generic triangle i with vertices
a,, a, and a,, considered as column vectors and numbered counterclockwise.

Use the one-dimensional trapezoidal quadrature rule to compute the boundary integrals; express
the element load vector in terms of the vertices a1, as. a; and function values of f.

HINT: You may use the notation
. 1 ife; €ely
by = .
) otherwise,

with e;; denoting the edge connecting the vertices i and j, fori, j = 1.2, 3.

Solution: We have

Lic(1) = m;,.@;ﬁw + b ;,_(al)@
LK{E) = 513;1(32)—'02 _ a]| + 52;;’?.(&2)—'““ — aE'
LK{A) = 523}‘?.(33)@ -|- 5;“;1(33)MI
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