
Boundaries
Dirichlet specifies the values at the boundary.
Neumann specifies the derivatives at the boundary.
Periodic boundary conditions say   

    
      

    
 

Non-reflecting Neumann artificial boundary conditions:   
    

      
    

 

Partitioning

       
      

      
  

  

  
   

  
  

 

We already know   from the boundary condition, so we partition the matrix
               

                 

Formulae
Gauss Theorem

       
 

 

          
 

  

F is a vector

vectorized Product rule

                  

where   is the divergence and  by itself is the gradient
Divergence is the scalar product of the lying nabla vector and the other vector (added partial products)

and integrated:

         
 

 

            
 

 

          
 

 

  

Green's Formula for R2

               
 

 

             
 

  

          
 

 

very useful if          

other green stuff:

             
 

 

     
  

  
      

 

  

 
  

  
          

     
 

 

     
  

  
      

 

  

           
 

 

Integration by parts

             
 

 

          
 

  

              
 

 

 
  

   
        

 

 

                  
 

  

  
  

   
        

 

 

                      

For scalar output:           
 

 
     

 

 
              

 

 

Notes
Freitag, 30. Juni 2017 10:46
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another example:      
 

 
       

   
 

 
     

 

 

Integration by Substitution

        
    

    

                  
 

 

         
 

    

                          
 

 

Chain Rule

                      

  

  
    

  

  
   

  

  
    

  

  
   

  

  
   

beide richtungen, x und y, beachten!! weil partielle ableitungen

Trick: 
 

  
  

  

  
   

   

      
  

  
  Ziel: möglichst viele bekannte terme erstellen wie 

  

  
  indem man den linken teil zweiteilt.

Triangle Inequality

                   

Reference Shape

polar coordinates
                                                   
for a function            , define                                  
On the unit disk, r   [0,1[
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Laplace Operator
Laplace einer funktion f(x,y,t) ist die zweite ableitung in x und in y Richtung. Nicht in t.

   
   

   
    

   

   
        

    

   
    

 

 
  

   

  
    

 

  
  

    

   
     

 

 
  

 

  
      

   

  
      

 

  
  

    

   
    

Taylor

            
       

  
             

 

   

                 
      

  
              

Rest           
      

  
                

 

 

Gronwall: If the derivative and the function are together in an inequality

Transformation
Given a function that takes f and returns the integral of f on [-1,1], insert the argument as                    

Equations
Poisson (FDM) Elliptic time-dependent
            

Maximum Principle satisfied:      
    

 
 

 
      

    
, where      

    
    

     
       

Can be solved explicitly in 1D using Greens function (or with finite elements):

                    
 

 
                    

            

            

G here is continuous, symmetric,              , for a fixed x or y, it is piecewise linear in the other variable.

Any solution w to the poisson equation with righthandside g(x) satisfies the estimate      
 

 
 

 
      

 

Poisson in 2D

  
                   

                 
                   

                                              A ist tridiagonal mit B auf Hauptdiag. und 

(  ) auf nebendiag. B ist 4 auf Hauptdiag und -1 auf nebendiag.     

Media Porous (FDM)
                       

    
 

  
    

  

  
     

 

  
    

  

  
     where σ is a function

 

  
     

  

  
      

 
 
 

  
 
 
  
    

  
                 

 
 
 

  
 
 
  
    

  
 
 

  
 
 
      

  
                          

 
 
 

  
 
 
  
    

  
                

which gives if also done for the right side:

Heat Equation (FDM) Parabolic linear
  

  
                     

  
  

  

                

Total thermal Energy that must decrease over time:         
 

 
is originally    
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Total thermal Energy that must decrease over time:            
 

 
is originally      

 

 
              

 

 

Boundary Condition                                 stands for convective cooling.
Assume Temperature to never be negative.

                            
 

                         
 

         

More information on stability at FTCS

Linear Transport equation in 1D (FDM) Hyperbolic linear
         

  

  
             

  

  
                        

              
  

  
         

  

  
            

            

To solve with method of characteristics
//upwind scheme usable here

                                         

Radiative Cooling: Energy decreases with time => 
     

  
     

          
 
 

  
           

For hyperbolic advection(transport) equations, any choice of timestep results in an unstable FTCS scheme.

Burger's Equation (FVM) Hyperbolic

inviscid Burgers equation:            
 

 
    

 
  

Is a scalar conservation law => fulfills TVD that                     

//insert s as condition for x smaller than / bigger than in the weak solution U.

with Method of Characteristics:
  

  
      

  

  
     

  

  
                                

                                    for starting points   

//characteristic line goes straight upwards if it contains no t - e.g. if     .

Scalar conservation laws (FVM) Hyperbolic non-linear
SCLs include Transport equation and Burgers equation.              
SCLs satisfy the minimum/maximum principles => stay in interval of start usually

CFL:         
  

  

  
   

 

 
 

Even if   is smooth, the solution can become discontinuous
Need weak solutions
Lemma about Energy Bound for Scalar Conservation Laws:

TVD
Hyperbolic Equations like the transport equation are TVD if the total variation at step n+1 is not larger than at step n.

     
  

  
      

 

 

           

 

 

A numerical scheme is TVD  it is monotonicity preserving (if   is monotonically in/decreasing in space, then so is 
    .)

Elliptic, Hyperbolic, Parabolic
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Characteristic is where the equation becomes an ODE

Finite Differences
Convergence of approx order 2
u: value at Point,     f: load function

      
    

 
 
        

 
 
   

 
                   

       
     

 
          

 
    

 
                     

                   

  
                         

Expressing the given discretization problem as     , the stiffness Matrix is 

  
 

  
   

 
 
 
 
 

 

       

        

       

       

        
 
 
 
 

   

  

  

 
  

    

 

 
 

     

     

 
      

 
 

the boundary points are given by the Dirichlet Boundary and are not contained in u for this excercise with N+1 

subintervals. (We can also move the factor 
 

    to the rhs and get     which is faster to compute.)

Linear FEM in 1D
Trial function u is piecewise linear on an equidistant mesh => using hat basis to express it

              

   

   

                                       

So starting from a variational formulation            
 

 
               

 

 
     

              
        , we 

can choose the hat basis function as testfunction v and get by inserting            
 

 
   

       
         

 

 
     

                 

Thus,         
      

     
 

 
            

   
               

 

 
              

 

 

for       

Variational Formulation
After multiplying both sides with a testfunction     

    , integrate. Then probably use Green / partial Integration
(especially for poisson) to get an integral on the boundary, which is zero.

This gives the formulation "Find                        s  h th t .… " fo  ow d by th    w y fo  d 

integral equation.
Here, g is the boundary function from the condition          .

More general PDE for bilinear form
                                
boundary conditions:           
these coefficients can depend on x and y, but not on u
c can even be matrixvalued.                       
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partial integration and then v=0 on the boundary because it is in   
 

                  
 

 

               

                           
 

 

                     
 

 

choose basis functions and test for all that fulfill the boundary conditions.

Choose            in a nice way to get the PDE of the Core Problems

Quadratic FEM
Error for a quadratic solution is machine precision. We only have an advantage of convergence order in comparison with 
LinFem if the solution is in   .
(EMP: Falls f in H1. Und u in H1 denn linfem order 2 für L2 norm, 1 in H1. Und falls u in H2 denn quadfem order 3, 2 in H1 
norm. Das stimmt.)

So we consider two types of basis functions. The ones associated to the vertices of the mesh and the ones to the 
midpoint of each edge i of the mesh.

        
     
      

                    

        
     
      

                 

                

    

   

       
     

    

   

         

   

   

Should give a 6 × 6 Element-Stiffness-Matrix

FEM Error analysis:
       

Galerkin orthogonality:                

Galerkin orthog. + continuity + coercivity =>

    
 

         
 
        

FEM error  interpolation error
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FEM error  interpolation error

      
  

 
        

     

      
  

         
     

Example: for piecewise linear finite elements with continuity and coercivity

linFEM order 2 and 1 for    and   Norms. quadratic FEM orders 3 and 2 respectively. At least if exact u is smooth

LinFEM: The error satisfies the estimate           
  

           , where u is the exact solution to (1.1)-(1.2) and 

uh is its linear finite element approximation on a mesh with meshwidth h. Thus, the right error curves are the one 
with slope 1 with respect to the meshwidth and the one with slope 0.5 with respect to the number of degrees of 

freedom (because in two dimensions         
 

 
  .

FEM example: expected Convergence of                  

Shape Functions

onedimensional

quadratic

Hat Function Derivative and FEM stiffness Matrix

Crank-Nicolson Scheme 

 
  

      
 

  
         

    
     

      
 

                 

    
       

        
   

                  has         

where   
  

 

 
     

        
  

 

 
     

  and  is on the main diag. 

(   ) and on the second diags  
 

 
 

implicit Finite 
Difference Scheme
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Norms
maximum Norm

         
 

                    where   is the discretized solution and  is the exact solution.

Convergence Study

         
 

                       
                 

                  
                 

L2-Norm

     
  

 
                

 

 

Alternativ als Vektornorm l2: Wurzel der Summe aller quadrierten Absolutbeträge.
Inner Product:              

 

 
 

L1-Norm, generell Lp norm
Vektornorm. Summe aller absoluten Beträge.

generell als Vektornorm:      
 

        
 

      

H1-Norm

     
  

 
       

  

 
      

  

 

H1 Norm immer grösser als L2 norm
Inner Product:                            

 

 

H01-Norm
Inner Product:                  

 

 

     
  

 

 
                  

Spaces
  

        is the function space of all continuous functions v such that 

          
 

 

                

Inner Product:                  
 

 

The above sobolev space requires the function to be in      , which means that it is squre-integrable and the scalar 

product is defined in   as       .

Q: Difference between H space and C space.
A: H is about square integrability of derivative. C about continuity

Eine funktion ist element des sobolev-raums    wenn sie in   ist und die erste Ableitung square-integrable ist. Das 
inner product ist                  
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inner product ist                       
 

 

  ist ein Hilbertraum, so wie auch   
 und   . D.h. es hat ein Skalarprodukt und der Raum ist vollständig bzgl der damit 

induzierten Norm -> jede Cauchy-Folge konvergiert.
Das Skalarprodukt sei linear im zweiten argument und semilinear im ersten. D.h. mit    gilt              und 
              .

  contains   functions whose weak derivatives of order up to s are also   . So if something is in   , then its derivative 
is square integrable.

  
    is the space of continuously differentiable functions with compact support on Omega. That is, they vanish outside 

of it. This implies they will vanish on   .

FTCS

Example for 1D heat equation. (For transport:   
      

  
   

   
        

      
  ) 

  

  
     

   

   
   

 
  

      
 

  
          

 

   
        

     
      

  

   
      

  
   

   
        

     
      

  

Stable iff 
   

       
 

 
 

For hyperbolic advection(transport) equations, any choice of timestep 
results in an unstable FTCS scheme.

Explicit vs Implicit Euler

                      where f 

approximates the derivative

Implicity would instead have             

with the lhs the same.
Explicit equals forward in time. Central in Space 
see to the left in FTCS.
Backward in space see Upwind.

Upwind Scheme
The central scheme leads to a growth of energy at every time step and is unstable. We need to find schemes that posses 
a discrete version of the energy estimate.
Simplest: Forward in time (implicit), backward in space (explicit)
if the speed of the characteristic - a - is positive and the direction of information propagation is from left to right, then 
we use backward in space. (Example with linear transport eq:)

  

  
      

  

  
      

  
      

 

  
            

   
      

  

  
             

   
      

  
   

  
      

      
  

and with    we use forward in space instead:

  
      

 

  
            

     
    

  

  
             

This can generally (for both signs) be formulated and then reformed to

   
      

  

  
             

     
      

  

   
             

   

   
         

     
      

      

                             

The upwind scheme is stable if    
   

  
      . Then it satisfies the energy estimate        . where energy is defined 

as    
 

 
       

  
 

 
  

Energy decreases a little but is mostly conserved.
Important: ratio of         . To make more accurate, keep ratio and refine mesh.

FDM

FDM:Derivatives are discretized. e.g.         
             

              

FDM for Poisson: Equation                     leads to       where A is tridiagonal with -1/2/-1 and   
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FDM for Poisson: Equation                       leads to       where A is tridiagonal with -1/2/-1 and   

      
  
 

  

 

=> rather large System solving involved in calculating the derivatives. But it is tridiagonal, diagonally dominant, positive 
definit, symmetric and because of the last two invertible. So we can use any discrete linear solver, e.g. LU decomp.
Empirical convergence of the FDM scheme is 2.

Method of Characteristics
                       

for the given equation 
  

  
         

  

  
                

    describes where the solution  stays constant.

Case of constant a:            

                       //charakteristik eq auflösen nach x0 und das in U als argument einsetzen.

note that in that case, we could also add steps in between to get multiple shock lines and still have a weak solution 
by RH.
So we rather create a rarefaction wave which gives a continuous but not neccessarily differentiable solution.

                                                                  
                                                                                       

IN BOTH CASES: The wave speed is bounded in abs value by maximum of         and         

u is constant on characteristic x and 
  

  
     

//but this arguing doesn't seem to work with rarefaction where x/t cosnt

Burgers Equation has characteristics of form u*t+x0 because

If the solutions for a double-riemann problem have again meeting caracteristica, take the same flux function and set 
         to the values to the left and right of the new problem zone.

Steps from Characteristics to solution
replace boundaries depending on   with  by solving equations like       . Also insert that x in u as parameter
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Vorgehen FVM (Characteristics, Burgers, Shock&Rarefaction)

Take equation and compare to 
  

  
  

  

  
   

  

  
  

  

  
   

  

  
  . If rhs is 0, the solution is constant on the characteristic. Parametrize, 

usually               
  

  
   

  

  
  

  

  
   

  

  
  in an easier version. Then figure out 

  

  
  is where x is the characteristic (For 

Burgers, the Characteristic is simply              ). Take that and reformulate to     , then insert into       

to get     . Sketch the characteristics, set them equal to find where they intersect (time and space) and build 

Shock/Rarefaction as described below. if      , it's a shock. Use the characteristic as condition and the       as 

value. only consider t until the relation between left and right would switch. if that happens, solve that new problem 
again.

Rankine-Hugoniot (     ) 

Shock speed      
                 

           
             for a weak solution U, with   left of the shock and   right of the shock. f is the 

flux (usually multiplied with 
 

  
  )

this is only the speed of the shock, so the position of the shock would be        
This gives for the boundary terms regarding x a value dependent on t - that mus fullfill the initial data, so choose   

correspondingly.

e.g.          
            
           

Lax-Entropy condition
Requirement that information is not generated by the shock but comes from the initial data instead. Characteristics flow 
from the x-Axis into the shock, not out of it. This Condition is TVD - that is, the BV norm decreases in time.
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good
                

bad (create rarefaction instead)

                       
 

 
    

 

 
  

                                                

                                                

Entropy solutions are TVD

Rarefaction waves (     )
Assuming self-similarity: the solutions only depend on the ratio x/t
f is assumed in proof to be strictly convex, so f' is strictly increasing.

Create rarefaction solution as   
 

 
       

  
 

 

 
  assuming      in           

 

 
     

        

 
 
 

 
                 

    
  

 
 

 
                         

                

remember to multiply with t -----------------------^

Weak Solution
(3.4)              

If a Weak solution U is also differentiable, then U satisfies (3.4) point-wise. Hence, the class of weak solutions contains 
classical solutions.
Weak solutions are not neccessarily differentiable or continuous.

Oleinik entropy condition
If the flux f is not strictly convex.

     
          

    
                              

Finite Volume Method

Domain        . Point discretisation          
 

 
             where    

     

   
     .

Midpoint values are in between:  
  

 

 
 

    
  

 
         

These midpoints are the borders of the cells. So the middle of the cell is still with an integer index.

Point value approximation does not work because there are points where the solution is not continuous. So we use cell 

averages   
  

 

  
          

 
  

 
 
  

 
  

 
 
  

   

Conservation Law           
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This is not explicit because F needs knowledge of the exact solution U.

Godunov

Riemann Problem at each cell interface 

 
 
 

 
            

          
  

        
  

 

 
 

    
        

  
 

 
 

Solutions of this Riemann Problem are self-similar

            
 
   

  
 
 
  

    
        

Wavespeed is bounded by           
   so CFL:           

   
  

  
   

 

 
 

to ensure that the neighboring problems do not interact before the next time level.

Explicit Godunov Flux:

 
  

 

 
 

                       at the edge

 
  

 
 
  

  
 

  
    

 
     

 
 
  
    

   
    

  

Finite Volume Scheme:    
      

  
  

  
      

 

 
 

   
  

 

 
 

 
 

Godunov Flux:  
  

 

 
 

      
      

   

 
    
  

        
               

      
 

    
    

     
                  

    
  

also valid for non-convex 

flux
These two together are the Godunov Scheme

Computing it: If flux f has a single minimum  and no local 
maxima it is strictly convex, then

 
  

 
 
  

      
      

  

             
                

      

(local means without global and only in the interval of the 
starting values)

Solution is constant when  is.

"The point is that the derivative of the
BL-flux is increasing around the initial values we gave them, therefore,
the normal CFL condition won't really work since f'(u) is not bounded by
the values in the cells initially. A smaller CFL number does the trick
(around 0.2), and the max of f'(u) and 1 also works (you could just do
the global max of f'(u)). "

Note: dt = CFL * dx / max{1,max |f'|} in der Übung

the scheme is monotone if F is Lipschitz continuous, diffable in both arguments, non-decreasing in first argument 

and non-increasing in second argument. This involves  
  

   
           

  

   
          

  

  
  

(Linearized) Roe
Approximates the exact solution that Godunov would needs.

Lemma for two-point flux FVM
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Approximates the exact solution that Godunov would needs.

 
  

 
 
  

         
      

    

 
 

     
         

  
 
 
  

  

      
         

  
 
 
  

  

  
  

 
 
  

 

 
 
 

 
       

       
  

    
      

                          
    

 

     
           

    
 

                
  

 
 
  
  

  is assumed constant between two cells.
Use with the finite volume Scheme above.
Is simpler to implement than Godunov, because no optimization problem. Can be as good as Godunov in 1\0 case, 
but can also fail af in 0/1 case. It fails at solving (some) rarefactions because a rarefaction wave can travel in both 

directions but the approximated   is linearized.

Lax-Friedrichs scheme
Two waves from the middle to the left and the right.

 
  

 
 
  

   
  

  
     

  
 
 
  

  
  

  
   

 
  

 
 
  

         
      

   
    

         
  

 
                 

  

   
        

    
  

stable, nonoscillatory, approx. the entropy solution, but computed solutions are diffusive. Shocks are smeared. 
Results inferior to Godunovs.

Rusanov Scheme

Instead of the maximum speed, use locally selected speeds  
  

 

 
 

    
  

 

 
 

   
  

 

 
 

           
            

    

Rusanov Flux:  
  

 

 
 

         
      

   
    

         
  

 
            

          
            

    

 
                       

    
  

Comparison FEM, FDM, FVM (TODO)
https://math.stackexchange.com/questions/424672/what-is-the-difference-between-finite-difference-methods-finite-
element-methods#1359419
<https://scicomp.stackexchange.com/questions/290/what-are-criteria-to-choose-between-finite-differences-and-finite-elements> 

efficient quadrature-free implementation
local conservation for certain schemes
robust nonlinear methods for transport
discrete maximum principle for some problems
b u t
no Galerkin orthogonality, so convergence may be difficult to prove
Boundary conditions tend to be complicated to implement
Stencil grows if physics includes "cross terms"
//wtf did I just write?

FDM

conservation law may be violated (e.g. with shocks)
higher order accuracy is achieved by using higher order basis shape functions
Suitable for Heat transfer, Structural mechanics, vibrational analysis. Generally ideal for linear PDEs, but expensive 
and complex for non-linear PDEs.
FEM have the benefit of being very flexible, e.g., the grids may be very non-uniform and the domains may have 
arbitrary shape.
Galerkin orthogonality (discrete solution to coercive problems is within a constant of the best solution in the 
space)
simple geometric flexibility
robust transport algorithm
cellwise entropy inequality guarantees   stability holds independent of mesh, dimension, order of accuracy and 

FEM requires f to be non-zero, continous and integrable
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cellwise entropy inequality guarantees   stability holds independent of mesh, dimension, order of accuracy and 
presence of discontinuous solutions, without needing nonlinear limiters
easy to implement boundary conditions
"can choose conservation statement by choosing test space"
high order accuracy even with discontinuous coefficients, as long as you can align to boundaries
Continuous fem has trouble with transport (diffusive and oscillatory)
Have to choose between consistent mass matrix (some nice properties but has full inverse, thus requiring an 
implicit solve per time step) and lumped mass matrix
Has usually more nonzeros in assembled matrices
Variational Method: e.g. energies always drop for certain equations
Nice for irregular meshes

FVM is over volume. Fluxes arre integrated and flux is conserved. Can handly almost any PDEs. Accuracy is based on 
order of polynomial used for interpolation (?). Ideal for Fluid mechanics.

Bilinear Form

Convex
if second derivative > 0

Lax-Milgram Theorem: unique solution

If B is a sesquilinearform (or bilinear), and coercive on  (              
 

for some    )

then given a    , there exists a unique element    such that           for all    . For such  one has 
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then given a    , there exists a unique element    such that             for all    . For such  one has 

      
 

 
        where    is the bound from below of the form (That is,              

 
     )

Example
Notice: Coercivity is with a(v,v)

----------------------------------------------------------------------------------------------------
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----------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------

for the upper bound (5.28),    d α  o   f o   o    v ty   d  o t    ty  bov .

Poincaré inequality (for coerciveness)
Let p so that      and  a subset with at least one bound. Then there exists a constant C, depending only on  

and  so that for every function u of the   
      Sobolev ,         
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also works for    instead of   
 .

EMP:      
     

        
     

          

      
         

  

Cauchy-Schwarz

                                    

Notice: Nabla disappears (stammfnkt nehmen)

For     
 ,         

 

 
      

  
      

  
 

             
     

     
     

With an additional factor, we just multiply by its supremum or infinimum instead to prove  or  

                                                                                

Loglog plot
slope = polynomial exponent
smooth solution of a variational problem in one excercise had convergence 2 in L2 and 1 in H1

Monotonicity
Entropy solutions are monotonicity preserving. i.e. if all initial values of one are smaller than the other, then this holds at 
every timestep.

LF, Rusanov, Godunov and Engquist are monotonic schemes. They are also consistent and conservative.
Consistent Monotone schemes are TVD

Example Maximum Principle

use       and make sure summands in step to   
   before the   are   . Then we can say that        

     

      
      (in multiple summands) and solve to get        
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     (in multiple summands) and solve to get       

         

possibly useful: Truncation error from Skript nearby Heat Eq
Implicit FD Convergence with second order in space and first in time

   
    

  
      

 

  
        

    
     

      
 

                                 b   h w   h       

              
  

 
         

  
   

              
                             

 

explicit FD

            Convergence with second order in space&time

Consistency, Stability
Consistency: a finite difference approximation is consistent if the truncation error approaches zero while we decrease 
mesh- and timestep-size. Probably show it with Taylor
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Stability: a finite difference approximation is stable if the complete error decays with the marching step
Convergence is when stable and consistent with the PDE. (Lax Equivalence Theorem)

ODE
Runge-Kutta

Convergence Analysis

Separation der Variablen

            
  

  
            

1. Nullstellen:                

2. separieren: 
  

  
            

 

    
            

3. integrieren:  
 

     
                

 

  
  

 

  

4. nach y auflösen: prüfen und einsetzen
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4. nach y auflösen: prüfen und einsetzen

Transformation

Load Vector        
 

 
       Auf Strecke 12 ist part bei 2 null für j=1

Kronecker Delta um alle Punkte abzugehen (Aufteilung in integral von 1 nach 2 
und von 2 nach 3)
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