
About Transport Layer, Congestion control and the TCP summary.
TCP vs UDP
TCP creates a connection and ensures ordered delivery and reliability.
UDP may lose, reorder or duplicate messages and has a limited message size, but is faster.
TCP is controlled by Congestion control from network state and by flow control from reciever state.
TCP does not keep boundaries from send() and recv().
TCP is bidirectional => add small ack package to other package for less overhead.
(TCP has urgent pointer field to skip queue)

Socket Commands
socket - create a new communication endpoint
bind

listen - announce willingness to accept connections
accept - establish an incoming connection (passively)
connect - actively attempt to establish a connection
send
recieve receive

For Streams:

sendto
receivefrom

For Datagrams:

close - release the socket

udp

buffers at port with message queues. Message length up to 64K (wat?)

16bit checksum.
Source port, Dest port
message length

Header contains:

The checksum is optional and covers UDP segment and IP pseudoheader. Value of zero means no
checksum.
IP Pseudoheader contains source address, dest. address, protocol=17 and UDP length.

TCP

client sends SYN(x), server replies with SYN(y) ACK(x+1)
Should be robust against delayed duplicates.

Quiz 4 Recap
Dienstag, 30. Mai 2017 18:44

 OSNet Seite 1

client sends SYN(x), server replies with SYN(y) ACK(x+1)
Client replies with ACK(y+1)
If no Ack comes, syn is retransmitted.
If delayed duplicate arrives, we know it has already been here.

After that, the client directly sends data without waiting for a server ACK and keeps its ACK on y+1
for that next package with the same SEQ. After that, the SEQ is increased with each package.
Example:

https://stackoverflow.com/questions/5551682/why-is-ack-1-and-not-2-in-first-tcp-request-after-
connection-establishment

TCP allows simultaneous open: Both clients send a syn, acknowledge it and done.

client sends FIN, server sends ACK FIN, client sends ACK
Releasing connection:

Sliding Windows
Because Stop&wait ARQ only covers stop-and-wait, which is fine for LAN but not for network paths
with big BD.
Allows W packets to be outstanding => can send W packets per RTT (=2D).
Gives more effiecient reliability (know when package was lost).
selective ACKS (SACK) give optionally hints for the reciever buffer state. Ack contains highest number
expected next, so if a lower packet is recieved, there is an ack with the same number sent by the
reciever (duplicates would be ignored instead).
ACK Clock.

Initial ARPANET used fixed sliding window size (e.g. 8 packages underway). But with more hosts in
network, queues became full -> retransmissions clogged the network. => introducing congestion
windows with TCP Tahoe/Reno.

Congestion
high traffic -> high loss -> more traffic -> more loss -> more delay
AdditiveIncreaseMultiplicativeDecrease converges over time to a fair and efficient allocation when
hosts run it. MIAD, MIMD, AIAD do not.

Feedback signals
Packet loss, Packet delay, Router indication.
late but easy, early but guessing, early but need router support.

AIMD Example aimd

 OSNet Seite 2

https://stackoverflow.com/questions/5551682/why-is-ack-1-and-not-2-in-first-tcp-request-after-connection-establishment
https://stackoverflow.com/questions/5551682/why-is-ack-1-and-not-2-in-first-tcp-request-after-connection-establishment

Slow start is until a ssthresh-hold and from then on AdditiveIncrease.
Slow start: Increment the cwnd (congestion window) by 1 segment size for each ack. (doubling the
packets)
After threshhold, increment only by 1 segment size every cwnd ACKs.
cwnd says how much data can be on its way at the time.
After loss, set ssthresh to half of cwnd. Halve cwnd (or completely restart, depending on whether it's
Reno or Tahoe)

When the congestion window exceeds the ssthresh threshold, the algorithm enters a new state,
called congestion avoidance. In some implementations (e.g., Linux), the initial ssthresh is large, and
so the first slow start usually ends after a loss. However, ssthresh is updated at the end of each slow
start, and will often affect subsequent slow starts triggered by timeouts. In congestion avoidance
state as long as non-duplicate ACKs are received, the congestion window is additively increased by
one MSS every round-trip time. When a packet is lost, the likelihood of duplicate ACKs being
received is very high.[a]

Aus <https://en.wikipedia.org/wiki/TCP_congestion_control>

Fast retransmit: We know that some package arrived if we get an ack, but we only got ack for the
highest number before the gap -> after three duplicate acks we infer that the gap was lost. ACK later
jumps up after loss is repaired.

But when the host is waiting for the ack to jump, we have a quiet time at sender and reciever and
still need to MD cwnd. That seems to be because the timeount timer is reset on every send?
Fix is fast recovery.

Fast recovery:
Do fast retransmit. Then pretend further duplicate ACKs are the expected ACKs so if we sent data 14
again, then we continue with data 21 even though it has not yet been acked.

 OSNet Seite 3

https://en.wikipedia.org/wiki/Congestion_avoidance
https://en.wikipedia.org/wiki/TCP_congestion_control#cite_note-7
https://en.wikipedia.org/wiki/TCP_congestion_control

So We AI: both hosts send more. Then we MD: we decrease one host more than the other host.
Thus, we get towards the middle. (if we were already to the right, we would decrese the other host
more.

Adaptive Timeout is basically using the average round trip time to determine the timeout time.

ACK clocking is part of sliding windows and useful if sender sends a burst of info. Because the next
link only sends the packages when it got an ack.

Max-Min fair allocation
Maximize the minima. so every flow is equally big until one cannot grow any more. then only
increase the others.

Openloop vs Closedloop
TCP is closed loop: it uses feedback to adjust rates.
Open would mean that it reserves bandwidth before use.
TCP is host-driven (vs network driven) because the host decides the amount it sends. And TCP is
window-based instead of Rate based.

 OSNet Seite 4

TCP Tahoe

So we set ssthresh to the largest that still works (because obviously cwnd was too big so doubling
cwnd/2 would fail again.
Note that ssthresh is initially infinity, so we will fail at some point. Unless reciever stops us with
sliding window.
But isn't this slide reno? Tahoe vs Reno vs SACK No. Tahoe also halves cwnd. The difference is that
Tahoe then restarts at cwnd=1 MaxSegSize and Reno restarts at the new ssthresh (cwnd/2)

 OSNet Seite 5

Adaptive Retransmission Based on Round-Trip Time Calculations
It is for these reasons that TCP does not attempt to use a static, single number for its
retransmission timers. Instead, TCP uses a dynamic, or adaptive retransmission scheme.
TCP attempts to determine the approximate round-trip time between the devices, and
adjusts it over time to compensate for increases or decreases in the average delay. The
practical issues of how this is done are important, but are not covered in much detail in the
main TCP standard. RFC 2988, Computing TCP's Retransmission Timer, discusses the
issue extensively.

New RTT = ( * Old RTT) + ((1-) * Newest RTT Measurement)

Round-trip times can “bounce” up and down, as we have seen, so we want to aim for
an average RTT value for the connection. This average should respond to consistent
movement up or down in the RTT without overreacting to a few very slow or fast
acknowledgments. To allow this to happen, the RTT calculation uses a smoothing formula:

Where “” (alpha) is a smoothing factor between 0 and 1. Higher values of “ (closer to 1)
provide better smoothing and avoiding sudden changes as a result of one very fast or very
slow RTT measurement. Conversely, this also slows down how quickly TCP reacts to more
sustained changes in round-trip time. Lower values of alpha (closer to 0) make the RTT
change more quickly in reaction to changes in measured RTT, but can cause “over-reaction”
when RTTs fluctuate wildly.
Acknowledgment Ambiguity
Measuring the round-trip time between two devices is simple in concept: note the time that a
segment is sent, note the time that an acknowledgment is received, and subtract the two.
The measurement is more tricky in actual implementation, however. One of the main
potential “gotchas” occurs when a segment is assumed lost and is retransmitted. The
retransmitted segment carries nothing that distinguishes it from the original. When an
acknowledgment is received for this segment, it's unclear as to whether this corresponds to
the retransmission or the original segment. (Even though we decided the segment was lost
and retransmitted it, it's possible the segment eventually got there, after taking a long time;
or that the segment got their quickly but the acknowledgment took a long time!)
This is called acknowledgment ambiguity, and is not trivial to solve. We can't just decide to
assume that an acknowledgment always goes with the oldest copy of the segment sent,
because this makes the round-trip time appear too high. We also don't want to just assume
an acknowledgment always goes with the latest sending of the segment, as that may
artificially lower the average round-trip time.

Aus <http://www.tcpipguide.com/free/t_TCPAdaptiveRetransmissionandRetransmissionTimerCal-2.htm>

Adaptive Timeout
Mittwoch, 31. Mai 2017 08:36

 OSNet Seite 6

http://www.tcpipguide.com/free/t_TCPAdaptiveRetransmissionandRetransmissionTimerCal-2.htm

TCP Tahoe is the simplest one out of the four variants. It doesn’t have fast recovery.
At congestion avoidance phase, it treats the triple duplicate ACKs same as timeout.
When timeout or triple duplicate ACKs is received, it will perform fast retransmit,
reduce congestion window to 1, and enters slow-start phase.
TCP Reno differs from TCP Tahoe at congestion avoidance. When triple duplicate
ACKs are received, it will halve the congestion window, perform a fast retransmit,
and enters fast recovery. If a timeout event occurs, it will enter slow-start, same as
TCP Tahoe. TCP Reno is effective to recover from a single packet loss, but it still
suffers from performance problems when multiple packets are dropped from a
window of data

Aus <http://www.roman10.net/2011/11/10/tcp-tahoe-reno-newreno-and-sacka-brief-comparison/>

So when we have a timeout, we restart the cwnd searching at 1 with slow-start.

TCP NewReno tries to improve the TCP Reno’s performance when a burst of
packets are lost by modifying the fast recovery algorithm. In TCP NewReno, a new
data ACK is not enough to take TCP out of fast recovery to congestion avoidance.
Instead it requires all the packets outstanding at the start of the fast recovery period
are acknowledged.
TCP NewReno works by assuming that the packet that immediately follows the
partial ACK received at fast recovery is lost, and retransmit the packet. However, this
might not be true and it affects the performance of TCP. SACK TCP adds a number
of SACK blocks in TCP packet, where each SACK block acknowledges a non-
contiguous set of data has been received. The main difference between SACK TCP
and Reno TCP implementations is in the behavior when multiple packets are
dropped from one window of data. SACK sender maintains the information which
packets is missed at receiver and only retransmits these packets. When all the
outstanding packets at the start of fast recovery are acknowledged, SACK exits fast
recovery and enters congestion avoidance.

Aus <http://www.roman10.net/2011/11/10/tcp-tahoe-reno-newreno-and-sacka-brief-comparison/>

TCP Tahoe and Reno[edit source]

The two algorithms were retrospectively named after the 4.3BSD operating system in which each first
appeared (which were themselves named after Lake Tahoe and the nearby city of Reno, Nevada). The
"Tahoe" algorithm first appeared in 4.3BSD-Tahoe (which was made to support the CCI Power 6/32
“Tahoe” minicomputer), and was made available to non-AT&T licensees as part of the “4.3BSD
Networking Release 1”; this ensured its wide distribution and implementation. Improvements were made
in 4.3BSD-Reno and subsequently released to the public as "Networking Release 2" and later 4.4BSD-Lite.
While both consider retransmission timeout (RTO) and duplicate ACKs as packet loss events, the behavior
of Tahoe and Reno differ primarily in how they react to duplicate ACKs:

Tahoe: If three duplicate ACKs are received (i.e. four ACKs acknowledging the same packet, which are not
piggybacked on data and do not change the receiver's advertised window), Tahoe performs a fast
retransmit, sets the slow start threshold to half of the current congestion window, reduces the
congestion window to 1 MSS, and resets to slow start state.[14]

•

Reno: If three duplicate ACKs are received, Reno will perform a fast retransmit and skip the slow start
phase by instead halving the congestion window (instead of setting it to 1 MSS like Tahoe), setting the
slow start threshold equal to the new congestion window, and enter a phase called Fast Recovery.[14]

•

In both Tahoe and Reno, if an ACK times out (RTO timeout), slow start is used, and both algorithms
reduce congestion window to 1 MSS.
Fast Recovery (Reno only): In this state, TCP retransmits the missing packet that was signaled by three
duplicate ACKs, and waits for an acknowledgment of the entire transmit window before returning to

Tahoe vs Reno vs SACK
Mittwoch, 31. Mai 2017 08:48

 OSNet Seite 7

http://www.roman10.net/2011/11/10/tcp-tahoe-reno-newreno-and-sacka-brief-comparison/
http://www.roman10.net/2011/11/10/tcp-tahoe-reno-newreno-and-sacka-brief-comparison/
https://en.wikipedia.org/w/index.php?title=TCP_congestion_control&action=edit§ion=7
https://en.wikipedia.org/wiki/4.3BSD
https://en.wikipedia.org/wiki/Lake_Tahoe
https://en.wikipedia.org/wiki/Reno,_Nevada
https://en.wikipedia.org/wiki/Computer_Consoles_Inc.#Power_5_and_Power_6_computers
https://en.wikipedia.org/wiki/Computer_Consoles_Inc.#Power_5_and_Power_6_computers
https://en.wikipedia.org/wiki/TCP_congestion_control#cite_note-kurose-15
https://en.wikipedia.org/wiki/TCP_congestion_control#cite_note-kurose-15

duplicate ACKs, and waits for an acknowledgment of the entire transmit window before returning to
congestion avoidance. If there is no acknowledgment, TCP Reno experiences a timeout and enters the
slow start state.

Aus <https://en.wikipedia.org/wiki/TCP_congestion_control#TCP_Tahoe_and_Reno>

New Reno
During fast recovery, for every duplicate ACK that is returned to TCP New Reno, a new unsent packet

from the end of the congestion window is sent, to keep the transmit window full. For every ACK that
makes partial progress in the sequence space, the sender assumes that the ACK points to a new hole, and
the next packet beyond the ACKed sequence number is sent.
Because the timeout timer is reset whenever there is progress in the transmit buffer, this allows New
Reno to fill large holes, or multiple holes, in the sequence space – much like TCP SACK. Because New
Reno can send new packets at the end of the congestion window during fast recovery, high throughput is
maintained during the hole-filling process, even when there are multiple holes, of multiple packets each.
When TCP enters fast recovery it records the highest outstanding unacknowledged packet sequence
number. When this sequence number is acknowledged, TCP returns to the congestion avoidance state.
A problem occurs with New Reno when there are no packet losses but instead, packets are reordered by
more than 3 packet sequence numbers. When this happens, New Reno mistakenly enters fast recovery,
but when the reordered packet is delivered, ACK sequence-number progress occurs and from there until
the end of fast recovery, every bit of sequence-number progress produces a duplicate and needless
retransmission that is immediately ACKed.
New Reno performs as well as SACK at low packet error rates, and substantially outperforms Reno at high
error rates.

Aus <https://en.wikipedia.org/wiki/TCP_congestion_control#TCP_Tahoe_and_Reno>

 OSNet Seite 8

https://en.wikipedia.org/wiki/TCP_congestion_control#TCP_Tahoe_and_Reno
https://en.wikipedia.org/wiki/TCP_congestion_control#TCP_Tahoe_and_Reno

timeout happens longer time than multiple duplicate acks.
timer is reset whenever we get a package in order (with the next number. not the same)

Example aimd
Mittwoch, 31. Mai 2017 09:12

 OSNet Seite 9

Transmission: Terms
Data transmission rate: data/time
Transmission Delay: how long to put data on the cable
Propagation Delay: how long the first bit has to travel to reach the end of the cable
Bandwidth-Delay-Product: how much data is on the cable without being recieved yet at maximum.

Nyquist Theorem
Ein Signal mit Frequenz f kann dann exakt rekonstruiert werden, wenn es mit mindestens 2f
Frequenz abgetastet wird. Anschaulich: Drehendes Rad im Stroboskop.

Bit/Byte Stuffing
Add Flag and Escape character. Flag tells start of frame. Esc Flag is needed if the Flag is part of the
actual message. But then we'd need to escape the Esc character again. now if the esc character gets
scrambled, we have a problem. So we XOR the Flag with e.g. 0x20 after escaping it so it wouldn't be
a valid flag.

Bit/Byte Stuffing is actually just this to escape the flag:

Internet Checksum
IP-Checksum: Usually 16-bit words.
Encode: Sum all words up (4-bit words in excercise). Add remainder until no remainders left after
adding. Take one's complement. => Checksum

Check: Add the checksum to the data and the results one's complement should be 0.

Hamming Code
Enumerate the bits of the message-to-transmit from 1 to N. Every power-of-n-th bit is a parity bit.
No parity bit includes other parity bits. We have n bits of data to actually send.

If the message is shorter than this n, then just ignore the rest (set the larger bits to 0?)
The parity bits are calculated by adding their respective bits: They take all bits into account that have
their i-th bit set. So the first parity bit considers the first, third, fifth and so on.

For checking, add the parity bit itself also. Order the results by their bit number, largest first. Then
read it as a number to get which bit is wrong and flip it. Assumes that only one bit will be wrong.

CRC Checksum
Only for recognizing random Errors, but it's easy to tamper with the data and find a way to make the
checksum still match.
1. Predetermine generator polynome (in binary. highest potence of x first)
2. Take data in binary and zero-extend it on the righthand side with (r-1) zeroes. r is the length of the
#bits of the generator polynome. (because the remainder is one digit smaller than the divisor)
3. Divide the extended data by the generator polynome. We are in a mod-2-arithmetic Ring so
addition, subtraction are XOR. We start with the first common 1. we can usually ignore the quotient
and justkeep the remainder. in the end, we set the (r-1) check bits to the remainder.
When the highest bit is 0, then we subtract 0 (XOR with 0 aka just continue) because that's how

Recap Quiz1
Montag, 8. Mai 2017 08:56

 OSNet Seite 10

When the highest bit is 0, then we subtract 0 (XOR with 0 aka just continue) because that's how
division works. (we'd usually add a digit to the quotient)

To recieve, we divide the recieved data and check whether the remainder is 0.

Wired Communication: ARQ
Automatic Repeat Request
if ACK goes lost, request again after a timeout.
In order for frames not to get confused, we add a bit to enumerate the frames.

 OSNet Seite 11

Wireless Communication

-> E and C cannot recieve because they get interference

-> nobody can send
-> A cannot recieve because it already gets a message

b) B is sending to A

-> A,B,C,E cannot recieve
-> A,B,C,D cannot send
=> E can send and D can recieve

c) B is sending to C

delete the sender and its neighbours from the graph to find all possible recievers. Delete the
reciever and all neighbours to find all possible senders. then check if the two are connected.

MACA

Terminals that think they cannot send are called exposed terminals.

If you hear a RTS but never a CTS then you are an exposed terminal and can figure this out.

If a node hears RTS but not CTS, then it might still conclude after carrier sense that the medium is
used. However, it can conclude that it is an exposed node if it does not recieve CTS.

CSMA/CA with RTS/CTS is synonymous to MACA
Uses RTS, CTS but also ACK
Network Allocation Vector: counts down until it can send again (estimated time from virtual sensing)

CSMA/CA without RTS/CTS
https://de.wikipedia.org/wiki/Carrier_Sense_Multiple_Access/Collision_Avoidance

 OSNet Seite 12

https://de.wikipedia.org/wiki/Carrier_Sense_Multiple_Access/Collision_Avoidance

Wird ein CTS oder RTS gehört ist das medium belegt und die Node die es hört somit am NAV zählen.

CSMA/CD
Contention Slot: How long to wait until we know a collision happened: Time for a signal to go there
and the ACK to come back.
=> CSMA/CD has a contention slot of 2T

Spanning Tree Algorithm (Link Layer, Switches)
A network with LAN nodes connected by switches. Goal: create a minimal spanning tree that
includes all LAN nodes.
The switch with the lowest address is the root. We grow the tree using the lowest distances from the
root. (Actually, the nodes constantly choose the closest root of the multiple small trees that might
exist).
Then we turn off ports for forwarding if they are not on the spanning tree. (Port = connection from
LAN to LAN through switch)

Network Layer

Packets contain a destination address. Router redirects this, maybe on a different path
each time.

Datagram: connectionless service (IP)

Setting up circuit, transferring data, then deleting circuit. statistical sharing of Links.
Packets contain a short label to identify the circuit instead of a long globally valid
address. Each router has a table with existing circuits

Virtual Circuits: constant connection going back and forth

Because Switches don't work across more than one link layer technology. Need to do translational
stuff. IP Protocol belongs to this too.

IP, DHCP, ARP

 OSNet Seite 13

IP, DHCP, ARP

IP has the advantage that a more specific ip overrides a less specific one.
Get IP via DHCP (Dynamic Host Configuration Protocol) by broadcasting to all nodes on the network
(Broadcast address 255.255.255.255)

To renew an existing lease, just use REQUEST, folowed by ACK

To get the addresses of destination links, use ARP (Address Resolution Protocol): just broadcast that
the node with IP xxx.xxx.xxx.xxx should please say who it is. ARP sits on top of Link Layer

ICMP (Internet Control Message Protocol)
sits on top of IP. If there's a problem, returns a package back with info and discards the problematic
package.

IPv6 and NAT
Problem: Need to map multiple shorter IPv4 internally to one external ip. => use ports.

Can only send incoming packets after an outgoing connection is set up (and the table is set in
the NAT)
Difficult to run a Server or P2P app behind a NAT
Breaks e.g. FTP which relies on sending the IP address and using random ports.

This breaks Connectivity:

 OSNet Seite 14

Breaks e.g. FTP which relies on sending the IP address and using random ports.

 OSNet Seite 15

Kernel
minimally provides basic scheduling, message passing and protection (paging)

fork
returns PID of the child to the parent
returns 0 to the child
wait using waitpid()
waitpid(pid, &status, 0);//0 for blocking
If not waiting, child will live longer as a zombie because maybe parent will at some point want to
know its status.
waitpid returns 0 as long as there are children to wait on. use pid -1 to wait for any child.
If the parent exits before the child, the proccess will get PID 1 as a new parent, which will reap the
exit code.

exec
never returns to the caller unless an error has returned. overwrites the whole process.

popen(command, type), pclose
opens a process and a pipe to it. command is a /bin/sh command.
pclose waits for this proccess to terminate and returns the exit status.

pipe
takes as argument an array with two ints. Returns two file descriptors if successful. Usually, you then
fork and each close one descriptor. fd[0] is set up for reading, fd[1] is set up for writing.

Scheduling
Turnaround time is from the first time a job is scheduled to when the job finishes.
Waiting time for a specific job is the time spent during which the job was not running since its
queuing up until it finished.
Average waiting time for all jobs is the waiting times added up and divided by the number of jobs.

for RR, this is the time between the tasks turns at worst
for EDF, this is the time between the entry time and the (deadline - execution time), because if
it were larger, the job would not meet its deadline.

Response Time is the time it takes to react to user input.

preemptive Scheduling is dispatching processes without warning, while non-preemptive scheduling
waits for them to yield.

RR
every x ms, the next job's turn. If a job enters the queue, it will be the next to get scheduled.
Higher Turnaround-time than SJF but better response

Shortest Remaining Time First
If a new job enters, that is shorter, then execute that one. Else, do one job after the other,
prioritizing the shortest.

First Come First Served

Rate-monotonic scheduling
Schedule periodic tasks by always running the task with the shortest period first. Period means at
least every p hours has to be run.

There is a feasible schedule if

Lernen Recap
Dienstag, 13. Juni 2017 09:24

 OSNet Seite 16

There is a feasible schedule if

assuming context switch time 0.
The period is independent of when the job is run

Earliest Deadline First
Does the whole job at once. The one with the first deadline comes first.
Tasks don't have to be periodic. Complex for scheduling decisions O(n)

There is a feasible schedule if

(Contrast: RR is a dynamic scheduling strategy without priorities)j
EDF is a real-time scheduling strategy with jobs that have priority.

Real-Time Scheduling
Usually not dynamic, because you cannot guarantee then that a correct schedule is feasible. New
jobs might fuck shit up.

Priority Inversion
When a resource is blocked by a low priority thread, and the thread is preempted by a medium
priority thread, then the high priority thread still cannot access the resource, so medium executes
and high does not.

Working Set Model
Timer interrupts after every 5000 time units. Keep 2 bits for each page in memory. Every time the
timer interrupts, shift the bits to the left and set the additional "reference bit" to 0. If page has to be
evicted, check if reference bit is 0, if yes check time bits, if no evict other page. time bits say the page
is still in the working set, if any of the bits is 1, which means that after ca 10000 time units being
unused, the page is no more in the working set.
This is not completely accurate because if a page is referenced directly before the time hits it will live
10000 but if it is referenced directly after, it will live 15000. Improvement: smaller timestep.

Kernel Threads vs Userlevel Threads
Userlevel Threads are cheap to create and destroy, fast to context switch, but can block entire
process.
One-to-one threads are easier to schedule and nicely handle blocking. The OS knows there what's
going on.

Kernel-level threads require a context switch, involving changing processor regs that define the
current memory map, permissions and the cache.

Segmentation
Base address + offset, but checks if offset is below some limit. Like paging, but does not cause
internal fragmentation (Paging always uses 4kiB pages). suffers from external fragmentation though.
Fast Translation.

access same library from multiple processes
process isolation
interprocess communication

Uses:

page fault handler duplicates page when read from child process
How:

other uses of address translation
Process Isolation
Shared code segments
InterProcessCommunication
Program initialization
Efficient dynamic memory allocation
Cache management

 OSNet Seite 17

Cache management
Program debugging

Paging: Second Chance
approximates LRU by giving every page a bit that is set if the page was referenced. we clear the bit
instead if we would remove the page and then look for another page (FIFO).

Virtual Paging
Last 12 bits are used for offset. first 20 are split into two 10-bit addresses. first one points to
dictionary table entry, which points to page table. second points to page table entry.

So if we have 32bit addresses and the entries are 4B in size including optional additional flags, then

the whole page table (if it is a direct one without dictionary) has size

optimal paging
If known what pages will be accessed
always replace with the one that will not be used for the longest time

Why Memory Management
Providing processes with contiguous address space
sharing resources
minimizing fragmentation
giving or denying access to data
provide more virtual memory than actually available

ACL vs Capabilities
Access Control List (Row-wise) stores a list at each file with rights as rows and principals as columns.
Not scaling well with principals.
Capabilities (column-wise) stores a list globally which contains for each principal->file the rights. Not
scaling well with files.
POSIX: ACL with only three principals. owner, group, everyone.

Directories

simple, slow lookup
Linear list (filename, block pointer) tuples

collisions
fast name lookup
fixed size

Hash Table with closed hashing

increasingly common
Complex to maintain but scales well

B-Tree

Files
Byte-sequence
can be truncated, updated in place, and appended to
usually no insert

Random access

tell returns current index, seek gives absolute or relative to current position
support read, write, seek, tell

Index units: for byte sequence files, offset in bytes

Memory mapped files
uses Virtual Addressing system to cache files. Map file content into virtual address space, set the
backing store of region to file. Can now access the file using load/store

 OSNet Seite 18

backing store of region to file. Can now access the file using load/store
Updates go back to file instead of swap space if memory is paged out.

Filesystem implementations
FAT
Linked list with blocks. Free space management with a FAT array.
The linked list itself is the Fast Access Table. lose it and you lost.
Locality: poor -> Defragmentation
Slow random access because linked list.

FFS
Fast File System. Has a fixed, asymmetric tree of blocks and a fixed bitmap for free space
management.
Locality: Block groups, Reserves space

Inode contains metadata, data blocks and indirect blocks. All blocks are 4kB.

13-block file has one indirect pointer because 13*4=52 kB is too large to fit into the inode
Example: 12-block file is stored in inode because 12*4=48 kB

Total usually 12 direct blocks, one indirect, one doubly indirect and one triply indirect in inode.

NTFS
Dynamic tree. Extent granularity
Free space bitmap in file
Locality: Best fit, Defragmentation

MasterFileTable contains small files directly, else pointers.
Also contains filename and hard links.
Pointers point to data extents
attribute list can also be stored in extents, or in a second MFT entry.
File System Metadata is also held in files. MFT is at the start of the volume.

ZFS
Dynamic
COW tree (Copy on Write)
Index granularity: Block
Free space: Log-structured space map
Locality: Write anywhere, block groups (see book for details)

Polling vs interrupts vs DMA
polling has low latency but blocks the proccessor. So if we need to wait anyways, why not poll. Else
yield and wait for an interrupt, allowing an other process to run.
DMA allows to transfer large amounts of data without involving the CPU but requires the page to be
pinned (locked in RAM and always at the same place)

Device Types

Block Devices
Deals with blocks of data
Looks like files -> can seek/map
Mountable -> Filesystem implemented above devices
allow random access

Character Devices
Unstructered I/O, byte-stream interface
E.g. Keyboard, Mouse

Block devices (also called block special files) usually behave a lot like ordinary files: they are an array
of bytes, and the value that is read at a given location is the value that was last written there. Data
from block device can be cached in memory and read back from cache; writes can be buffered. Block
devices are normally seekable (i.e. there is a notion of position inside the file which the application
can change). The name “block device” comes from the fact that the corresponding hardware
typically reads and writes a whole block at a time (e.g. a sector on a hard disk).
Character devices (also called character special files) behave like pipes, serial ports, etc. Writing or

 OSNet Seite 19

Character devices (also called character special files) behave like pipes, serial ports, etc. Writing or
reading to them is an immediate action. What the driver does with the data is its own business.
Writing a byte to a character device might cause it to be displayed on screen, output on a serial port,
converted into a sound, ... Reading a byte from a device might cause the serial port to wait for input,
might return a random byte (/dev/urandom), ... The name “character device” comes from the fact
that each character is handled individually.

Device Driver
Hardware is interrupt driven, Applications are blocking, considerable processing in between.
e.g. TCP/IP processing, retries, file system processing, locking, etc.

Interrupt handler can't take too long (interrupts disabled during handling)
Cant change much: arbitrary system state
Process waits (in single core setting) because CPU is doing interrupt handling. We don't know until
demultiplexing to which process the interrupt goes.

Solution1 : Driver Threads.
Interrupt Handler masks interrupt, does minimal processing and unblocks driver thread. Driver
Thread performs all packet processing neccessary, unblocks user processes, unmasks interrupt when
finished.
User process in kernel does per-process handling, copies packet to user space and returns from
kernel.

Solution2 : Deferred procedure calls (DPC)
FirstLevelInterruptHandler FLIH enqueues DPC and then the next user process runs all pending DPCs
when unblocked before leaving the kernel and running its own code.
This is done in most Unix versions as it does not need kernel threads and saves a context switch.
Cannot account processing time to the right process.

Solution3: Demux early, run in user space

Kernel offers driver a device. it claims it if it can handle it.
Major device number: Class of device, e.g. disk, CR-ROM, keyboard, …
Minor device number: specific device

Deferred Procedure Calls
are also known as 2nd level interrupt handlers, soft/slow interrupt handlers and in linux (ONLY)
bottom-half handlers.

Top half = Called from user space (syscalls etc.)
In non-linux OS: Bottom half = FLIH + SLIH, called from below

NAPI switches between "each packet interrupts CPU", "CPU polls driver"

IOMMU
Memory is protected from malicious devices - a device can only access what has been mapped.
Device can access memory even if it does not support the whole address range
Virtual Adressing & Paging
Virtualized guest OS can use devices that do not explicitely support virtualisation.

Stand: Next: OS quizes and NET everything

Signals, Interrupts
File Systems (especially NTFS), Acces Control Lists
Link, Unlink, Rename

To Look at:

 OSNet Seite 20

Link, Unlink, Rename

TCP ACKs
SEQ = x
ACK = x + length(x)
SEQ = ack
ACK = ack + length(ack)
…

not 1-steps, but length steps.
SEQ + length always < ACK + Window Size

Shadow paging

Shadow page tables are used by the hypervisor to keep track of the state in which the
guest "thinks" its page tables should be. The guest can't be allowed access to the
hardware page tables because then it would essentially have control of the machine. So,
the hypervisor keeps the "real" mappings (guest virtual -> host physical) in the hardware
when the relevant guest is executing, and keeps a representation of the page tables that
the guest thinks it's using "in the shadows," or at least that's how I like to think about it.
Notice that this avoids the GVA->GPA translation step.
As far as page faults go, nothing changes from the hardware's point of view (remember,
the hypervisor makes it so the page tables used by the hardware contain GVA->HPA
mappings), a page fault will simply generate an exception and redirect to the appropriate
exception handler. However, when a page fault occurs while a VM is running, this
exception can be "forwarded" to the hypervisor, which can then handle it appropriately.

Guest writes a mapping for VA 0xdeadbeef into it's page tables (a location in
memory), but remember, this mapping isn't being used by the hardware.

•

Guest accesses 0xdeadbeef, which causes a page fault because the real page
tables haven't been updated to add the mapping

•

Page fault is forwarded to hypervisor•
Hypervisor looks at guest page tables and notices they're different from shadow
page tables, says "hey, I haven't created a real mapping for 0xdeadbeef yet"

•

So it updates its shadow page tables and creates a corresponding 0xdeadbeef->HPA
mapping for the hardware to use.

•

The hypervisor must build up these shadow page tables as it sees page faults generated
by the guest. When the guest writes a mapping into one of its page tables, the hypervisor
won't know right away, so the shadow page tables won't instantly "be in sync" with what
the guest intends. So the hypervisor will build up the shadow page tables in, e.g., the
following way:

The previous case is called a shadow page fault because it is caused solely by the
introduction of memory virtualization. So the handling of the page fault will stop at the
hypervisor and the guest OS will have no idea that it even occurred. Note that the guest
can also generate genuine page faults because of mappings it hasn't tried to create yet,
and the hypervisor will forward these back up into the guest. Also realize that this entire
process implies that every page fault that occurs while the guest is executing must cause
an exit to the VMM so the shadow page tables can be kept fresh. This is expensive, and
one of the reasons why hardware support was introduced for memory virtualization.
(here is one quick intro to nested, or extended page tables)
A good reference for this is this book

Aus <https://stackoverflow.com/questions/9832140/what-exactly-do-shadow-page-tables-for-vmms-do>

 OSNet Seite 21

http://www.anandtech.com/show/2480/10
http://rads.stackoverflow.com/amzn/click/1558609105
https://stackoverflow.com/questions/9832140/what-exactly-do-shadow-page-tables-for-vmms-do

 OSNet Seite 22

Identify the seven layers of the OSI model in order from Layer 1.

7 Appl i cation Layer

6 Pr esent ation Layer

5 Sessi on Layer

4 Tr ansport Layer

3 Net wor k Layer

2 Dat a Li nk Layer

1 Physi cal Layer

Name two types of ARQ that were discussed in class

Um sicher zu stellen, dass die gesendeten Pakete angekommen sind.
Stop and Wait: Nach jedem gesendeten Paket auf eine Bestätigung warten und erst dann das nächste
Paket senden. Benutzt ein Bit als sequence number.

Sliding Window: Verallgemeinerung von Stop-and-Wait: Benutzt w Bits als sequence number. Erlaubt

dadurch unterscheidbare Packete.
Go-Back-N: Nach N Paketen auf Bestätigung warten. Bei einem Fehler (keine Bestätigung nach
bestimmter Zeit) werden die letzten N Pakete nochmals gesendet.
Selective Repeat: Bei einem Fehler werden nur die Pakete nochmals gesendet, für die es keine
Bestätigung gab.

Difference Hub, Switch?

Ein Hub arbeitet auf dem Physical Layer, ein Switch jedoch auf dem Link Layer (teilweise auch Network
Layer). (Siehe Slide 91) [1]
Beide verbinden Netzwerkteile, jedoch broadcasted der Hub einen empfangenen Frame auf alle Ports
und somit wird auch bei allen Ports Bandbreite gebraucht. Der Switch hingegen merkt sich die MAC-
Adressen der an den Port angeschlossenen Geräte und kann somit einen empfangenen Frame an den
richtigen Port weiterleiten

BGP Announcements

Announce to both providers and peers. Prefer Customers when directing traffic.

Give two reasons why having more virtual memory than physical memory is useful

Copy-on-Write: Reuse the same spot for multiple applications if it's read-only•
Paging: Can page memory out to disk (e.g. Linux-Swap)•
Devices: Can use virtual memory to point to other hardware•

Which hardware feature is required for preemptive multitasking, but not for cooperative
multitasking?

hardware timer

retarded questions
Freitag, 16. Juni 2017 06:52

 OSNet Seite 23

https://spcl.inf.ethz.ch/Teaching/2016-osnet/lectures/net_1_1s.pdf

Give an upper bound for the response time under earliest-deadline-first scheduling. Assume that all
deadlines are met

Deadline - Entry Time

 OSNet Seite 24

